根据维基百科的定义,综合监测(也称主动监测)技术是指使用Web浏览器模拟或用Web交易的脚本记录来完成的网站监测。它通过创建行为脚本(或路径)模拟客户或终端用户在网站上执行的操作或路径。然后在设定的时间间隔内持续监测那些路径的性能,如:功能性、可用性和响应时间测定。
许多公司依赖这种综合监测技术来进行数字体验监测。而且理由充分。在当今以应用为中心的新环境中,企业将根据终端用户体验评估Web应用的性能。鉴于用户对页面反应时间的要求越来越高,IT部门已经意识到持续监测应用性能和可用性的价值。传统的综合监测虽然能够提供重要功能,但也会在关键的终端用户体验监测用例中存在空白和差距。
综合监测概述
对于综合监测而言,应用性能管理产品执行脚本可以用来模拟用户与关键应用之间的交互情况。这些产品定期从各个不同的地点运行脚本。综合测试工具在发现宕机或性能下降时会发出警报。借助这些功能,IT可以主动识别可能影响用户数字体验的可用性问题或主要执行问题。
使用综合监测系统的九大理由
以下是IT依赖综合监测系统的一些主要原因。
1.监测应用程序的全天候可用性—包括非工作时间
2.针对应用可用性问题的主动通知
3.识别远程站点的可达性问题
4.了解第三方服务对客户应用的影响
5.监测SaaS应用的性能和可用性
6.测试使用SOAP,REST或其它Web服务技术的B2BWeb服务
7.监测关键数据库查询的可用性
8.评估服务水平协议(SLA)
9.为各地区的性能趋势设定基准并加以分析
综合测试的局限性
综合测试是数字体验监测的有效方法,但也有其局限性。它所依赖的脚本只能模拟用户体验,而不能测定实际的终端用户体验。因此,综合测试无法帮助IT人员理解用户在与应用交互时实际看到的情况。
此外,综合监测系统无法看到设备资源及健康度对应用性能的影响。应用真的很慢吗?还是用户的设备缺少足够的内存或CPU?
最后,综合测试脚本也无法了解应用性能差的终端用户特征(身份、角色、部门、位置)。
不使用综合监测系统的六个理由
虽然综合监测有助于IT发现并解决一般性应用性能问题,但它并不能帮助企业解决一些重要的IT和业务应用问题。
1.解决终端用户投诉。当服务台工作人员收到终端用户投诉时,综合监测产品不会向工作人员透漏终端用户实际上正在做什么或正在经历什么。
2.解决设备问题。桌面服务团队需要了解其员工使用的笔记本电脑,个人电脑,平板电脑和移动设备的性能和健康程度。而综合测试产品则缺乏这种可视化。
3.确定设备性能如何影响应用性能。资源不足的设备会对应用性能产生负面影响。如果不了解设备性能,应用所有者就无法分离应用投诉的原因。
4.分析每个关键业务应用性能。公司依赖数十种关键业务应用。创建并维护用于综合测试的脚本是非常耗时的,即使是一个应用。
5.确认变化对整个阶段的影响。当IT对设备,应用或基础设施进行更改时,他们必须确认这些变化对实际终端用户体验的影响来确定效果。而比较综合测试的指标无法了解全貌。
6.提高劳动生产率。为了衡量IT对劳动生产率的影响,IT和业务高管需要评估企业使用的每个应用。而不单只是一个应用。
SteelCentral Aternity可以解决这些问题
作为一种基于设备的终端用户体验监测方法,SteelCentral Aternity填补了这一空白。Aternity监测终端用户设备的健康度和性能,以及应用在用户设备屏幕上表现出的性能。对于企业组合中每种类型的应用---本地,Web,云交付或移动。与综合测试产品不同,Aternity通过关联三个关键数据流(设备健康度和性能、终端用户看到的应用性能、用户行为)来呈现终端用户体验的真实画面。
好文章,需要你的鼓励
数据分析平台公司Databricks完成10亿美元K轮融资,公司估值超过1000亿美元,累计融资总额超过200亿美元。公司第二季度收入运营率达到40亿美元,同比增长50%,AI产品收入运营率超过10亿美元。超过650家客户年消费超过100万美元,净收入留存率超过140%。资金将用于扩展Agent Bricks和Lakebase业务及全球扩张。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。
医疗信息管理平台Predoc宣布获得3000万美元新融资,用于扩大运营规模并在肿瘤科、研究网络和虚拟医疗提供商中推广应用。该公司成立于2022年,利用人工智能技术提供端到端平台服务,自动化病历检索并整合为可操作的临床洞察。平台可实现病历检索速度提升75%,临床审查时间减少70%,旨在增强而非替代临床判断。
上海AI实验室发布OmniAlign-V研究,首次系统性解决多模态大语言模型人性化对话问题。该研究创建了包含20万高质量样本的训练数据集和MM-AlignBench评测基准,通过创新的数据生成和质量管控方法,让AI在保持技术能力的同时显著提升人性化交互水平,为AI价值观对齐提供了可行技术路径。