全球领先的ICT解决方案供应商华为,于7月28日参加全国电力系统及其管理信息交换标准化技术委员会在大连主办的第八届配电自动化技术应用论坛,并首次推出面向国内电力无线专网的eLTE解决方案。
随着智能电网技术的不断发展和应用,ICT技术助力对电网的全景状态感知、预测、诊断与决策,支撑电网的高效管理和运营。华为在发、输、变、配、用电领域提供端到端的eLTE无线智能电网解决方案,助力智能电网建设和发展,并在英国、奥地利、墨西哥等全球多个国家和地区有实际业务应用,极大提升了电力的智能化水平和管理效率。
中国智能电网发展,已形成以骨干光纤为主体,多种接入技术共同发展的趋势,无线专网由于其部署便利性、安全性和灵活性,已成为智能电网发展的最佳接入方式。针对国内电力无线专网发展具有频谱特殊、业务多样等特点,华为首次推出了面向国内电力无线专网的eLTE解决方案。
电力无线专网建设需考虑频谱充分利用、技术先进性、业务适用性和产业链等多个维度。
在频谱方面,电力无线专网建设需充分使用可用频谱资源服务电力业务。国家无线电管理委员会分配给电力230M 40个离散25kHz专用频点,工信部同时分配1785M-1805MHz的行业频谱可用于申请建设电力无线专网,同时通用计量频段470M-510MHz以及开放频段5.8G都可用于电力无线专网建设。
技术先进性方面,4G LTE技术已充分论证,不论性能、安全、工程建设的便利性都能满足电力无线专网的需求。同时,随着移动技术行业化,5G技术4.5G化的发展趋势,4.5G技术对提升4G LTE的频谱利用率、覆盖、时延和容量都在运营商市场得到充分验证,4.5G先进技术可用于提升电力无线专网价值。
业务适用性方面,4.5G技术充分满足电力业务宽带、窄带业务并存,海量终端接入,高可靠、低时延、低功耗等业务场景需求。
产业链方面,国际移动通信标准组织3GPP定义的4G、4.5G和5G具备广泛的产业链基础,可保证电力无线专网建设的经济性和长期演进性。
华为推出的电力无线专网eLTE解决方案充分考虑230M、1.8G、470M、5.8G等多种频率资源,融合了多天线技术、高阶MIMO、LTE-U和IoT等多种4.5G技术,全面服务电力无线专网建设。华为企业无线产品线副总裁崔景龙在“华为eLTE无线智能电网解决方案”的主题演讲中表示,凭借在3GPP标准组织的领先地位和技术积累,华为已率先将无线4.5G技术应用于电力生产和管理业务流,并推出基于4.5G技术的eLTE无线智能电网解决方案。华为eLTE具有建设便捷、网络安全、经济性好的优势,可随时随地、灵活接入不同带宽需求的固定和移动业务,实现一网多用,充分发挥无线专网的价值,解决配电自动化、微电网接入、充电桩管理、AMI抄表等实际应用场景,深度融合电力行业需求。
华为企业无线产品线副总裁崔景龙
华为eLTE解决方案深度适配电力行业,提供室外型、嵌入式的多样化无线接入终端,直接对接电力终端设备。同时提供标准的Mini PCIe卡和公专合一模组,用于电力合作伙伴集成到具备无线通信功能的电力终端中。公专网融合将是电力无线接入网近期的发展趋势,华为提供的公专网合一模组满足电力无线发展初期专网覆盖不足,先通过公网解决接入问题。随着专网的全面覆盖,将业务平滑切换到专网的需求。在本次论坛中,华为全面展示了从终端、网络和应用层的配电自动化通信解决方案。其中,华为与合作伙伴进行了产品联合展示,华为eLTE解决方案同故障指示器联合作业,实现对电力线路的实时检测和数据回传,有力地支撑电网的运检工作,保障电网正常运行。
华为一直以最开放的心态、始终坚持以客户为中心,不断努力和创新,与最优秀的伙伴,共同助力电力行业客户商业成功。
好文章,需要你的鼓励
尽管全球企业AI投资在2024年达到2523亿美元,但MIT研究显示95%的企业仍未从生成式AI投资中获得回报。专家预测2026年将成为转折点,企业将从试点阶段转向实际部署。关键在于CEO精准识别高影响领域,推进AI代理技术应用,并加强员工AI能力培训。Forrester预测30%大型企业将实施强制AI培训,而Gartner预计到2028年15%日常工作决策将由AI自主完成。
这项由北京大学等机构联合完成的研究,开发了名为GraphLocator的智能软件问题诊断系统,通过构建代码依赖图和因果问题图,能够像医生诊断疾病一样精确定位软件问题的根源。在三个大型数据集的测试中,该系统比现有方法平均提高了19.49%的召回率和11.89%的精确率,特别在处理复杂的跨模块问题时表现优异,为软件维护效率的提升开辟了新路径。
2026年软件行业将迎来定价模式的根本性变革,从传统按席位收费转向基于结果的付费模式。AI正在重塑整个软件经济学,企业IT预算的12-15%已投入AI领域。这一转变要求建立明确的成功衡量指标,如Zendesk以"自动化解决方案"为标准。未来将出现更精简的工程团队,80%的工程师需要为AI驱动的角色提升技能,同时需要重新设计软件开发和部署流程以适应AI优先的工作流程。
这项由德国达姆施塔特工业大学领导的国际研究团队首次发现,当前最先进的专家混合模型AI系统存在严重安全漏洞。通过开发GateBreaker攻击框架,研究人员证明仅需关闭约3%的特定神经元,就能让AI的攻击成功率从7.4%暴增至64.9%。该研究揭示了专家混合模型安全机制过度集中的根本缺陷,为AI安全领域敲响了警钟。