测试及测量领域的业界领导者思博伦通信今天宣布正式发布思博伦CloudScore。作为业界第一种全面的基线和基准测试解决方案,思博伦CloudScore可对任意虚拟化或云基础设施的性能进行评估和对比。
通过对虚拟化基础设施执行一系列可选择的测试,CloudScore可生成一个评分卡,显示出基础设施各个组件的相关情况,包括计算、网络、存储、应用和服务。CloudScore还可提供一份粒度报告,就如何优化基础设施给出建议,从而帮助用户执行这些变化,并改善被测基础设施的最终性能,而且还会在每次重新运行测试后对这一评分加以修订。
思博伦通信云及IP业务总经理Abhitesh Kastuar指出:“许多客户都希望能够更深入地分析其云基础设施并生成报告,也包括对多个云实例的健康状况进行对比、修改,以及利用评分卡对比多次结果的能力。为满足这一需求,思博伦推出全新的解决方案。该方案能够为网络架构师和建设方提供关键的工具和解决方案,对性能进行全面的分析,并且创建出适用于此类云部署的基准测试。”
思博伦CloudScore可以根据定义好的时间表自动运行测试,并以固定的时间间隔保存这些测试,而且完全无需改变初始的网络设置或参数。Kastuar指出:“我们发现,即使只是最微小的修改,这一特性也可以发挥非常大的作用,通过和基础设施初始基线分析对比,能够让我们看到这些替代配置所产生的结果。”
此外,CloudScore可以向用户发出预警,指出云指标中出现的异常或偏差,包括使用VNF计数器或云/内部监视等,从而可以启动必要的重新验证。在公有、混合,和私有云服务日益广泛的普及过程中,将这些能力直接集成到现有的管理系统,有助于实现更出色的强健性、服务水平协议和上游业务连续性。
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。