测试及测量领域的业界领导者思博伦通信今天宣布正式发布思博伦CloudScore。作为业界第一种全面的基线和基准测试解决方案,思博伦CloudScore可对任意虚拟化或云基础设施的性能进行评估和对比。
通过对虚拟化基础设施执行一系列可选择的测试,CloudScore可生成一个评分卡,显示出基础设施各个组件的相关情况,包括计算、网络、存储、应用和服务。CloudScore还可提供一份粒度报告,就如何优化基础设施给出建议,从而帮助用户执行这些变化,并改善被测基础设施的最终性能,而且还会在每次重新运行测试后对这一评分加以修订。
思博伦通信云及IP业务总经理Abhitesh Kastuar指出:“许多客户都希望能够更深入地分析其云基础设施并生成报告,也包括对多个云实例的健康状况进行对比、修改,以及利用评分卡对比多次结果的能力。为满足这一需求,思博伦推出全新的解决方案。该方案能够为网络架构师和建设方提供关键的工具和解决方案,对性能进行全面的分析,并且创建出适用于此类云部署的基准测试。”
思博伦CloudScore可以根据定义好的时间表自动运行测试,并以固定的时间间隔保存这些测试,而且完全无需改变初始的网络设置或参数。Kastuar指出:“我们发现,即使只是最微小的修改,这一特性也可以发挥非常大的作用,通过和基础设施初始基线分析对比,能够让我们看到这些替代配置所产生的结果。”
此外,CloudScore可以向用户发出预警,指出云指标中出现的异常或偏差,包括使用VNF计数器或云/内部监视等,从而可以启动必要的重新验证。在公有、混合,和私有云服务日益广泛的普及过程中,将这些能力直接集成到现有的管理系统,有助于实现更出色的强健性、服务水平协议和上游业务连续性。
好文章,需要你的鼓励
当前软件工程团队正在试验基于AI代理的编码工具和大语言模型,以提高开发速度和质量。然而,AI编码工具的效果很大程度上取决于使用方式。开发者需要提供结构化的问题描述、明确的执行要求和相关上下文,同时建立适当的防护机制。AI不仅能处理重复性任务,还能识别和评估替代方案,从被动助手演进为工作流程推进器。成功的关键在于将AI视为合作伙伴而非快捷工具,并将其整合到软件交付的全生命周期中。
NVIDIA研究团队开发出名为Lyra的AI系统,能够仅凭单张照片生成完整3D场景,用户可自由切换观察角度。该技术采用创新的"自蒸馏"学习方法,让视频生成模型指导3D重建模块工作。系统还支持动态4D场景生成,在多项测试中表现优异。这项技术将大大降低3D内容创作门槛,为游戏开发、电影制作、VR/AR应用等领域带来重大突破。
Salesforce发布企业级AI智能体平台Agentforce 360,将AI智能体融入几乎所有应用中。该平台采用混合推理引擎Atlas,结合大语言模型的概率思维和业务规则的精确性,支持语音交互和深度集成。以Slack为主要界面,提供Agentforce Builder开发环境,能将非结构化文档转换为可查询记录。Salesforce内部已部署该系统,每周处理180万次对话,主动服务活动增长40%。
谷歌DeepMind团队创新性地让Gemini 2.5模型在无需训练的情况下学会理解卫星多光谱图像。他们将复杂的12波段卫星数据转换为6张可理解的伪彩色图像,配以详细文字说明,使通用AI模型能够准确分析遥感数据。在多个基准测试中超越现有模型,为遥感领域AI应用开辟了全新道路。