目前,微软Office 365已经拥有超过8500万用户,其中包括各种规模的企业和组织。然而,部分用户可能会对Office 365有些意见,这背后的原因究竟是什么?
相信很多Office 365用户都有着不错的使用体验。而我们Riverbed,目前则拥有一款被微软称为混合云解决方案的产品,它支持扩展SharePoint部署、OneDrive、商用Skype以及Office 365中运行其他应用等功能。Exchange目前仍采用本地运行方式,但很快就会迁移至Exchange Online。虽然Office的核心组件(Word,PowerPoint等)还在很多人的笔记本电脑上运行着,但大家显然已经有了另外一种选择,即使用它的云版本以及一些偶尔会用到的其它应用。
尽管出发点不错,但某些IT部门从本地部署Office应用过渡至云Office 365的过程并不顺利。很多方面都会出错,结果导致用户满意度下降。
不能与生产力混为一谈
一般来说,用户不满意的原因是某些应用让他们的工作变得更复杂了。 下面就是几个例子:
这一切可以归结为终端用户生产力。打破它,你就会遇到各类问题,管理层也会为之侧目。
以下为IT组织在过渡至Office 365时可能遇到的三大陷阱,这些问题可能影响生产力。然后让我们一起来看看如何避免。
陷阱一:规划不周
这并不是说一定要在规划阶段花费多少时间。但是一定要了解在制定Office 365过渡计划时需要考虑哪些问题。正所谓:“防患于未然”。
微软为您提供了包括采用方法、项目模板、使用场景以及指导性规划等在内的各类资源。 Riverbed则可以帮您进行网络规划。
陷阱二:不掌握终端用户的使用情况
这一陷阱涉及两方面。首先,IT团队过于专注于实施细节而忽略了终端用户。在项目规划中设定指标,评估过渡前后终端用户的应用体验以及在产品熟悉过程中的用户满意度有助于解决这方面的问题。
其次是没有能力从终端用户的角度来评估应用性能。这里包括是否有能力测定从点击到相应的页面更新所耗费的时间。
借助Riverbed,IT部门就能轻松监测每一个终端用户使用各种应用的体验情况。它可以设置和监视可接受服务等级的阈值,以便在影响用户使用之前发现性能问题。这些问题可以与设备、网络或服务器(云)隔离,IT可据此确定故障排除的方向。
陷阱三:低估网络需求
某些无法预见的问题会成为项目经理的噩梦。这些问题可导致进度延迟、预算超标。网络问题可能是“黑暗中的怪兽”。
《Gartner:面向Office 365的网络设计最佳实践》(2016年8月)一文中指出:“我们预测,到2019年,全球规模的Office 365部署中超过一半将会遇到与网络有关的性能问题。”
这是因为与SaaS应用相关的网络流量模式与在本地运行的应用截然不同。原先容量充足且与Office 365 云相连接的企业网络在任何位置都可能出现瓶颈。另一个问题是终端用户和云之间的较长网络路径导致响应时间缓慢(高延迟)。 建议您阅读上面提到的Gartner那份研究报告,了解有关这些问题的更多信息及防范措施。
Riverbed可以帮助IT改善网络性能,多管齐下提高Office 365应用性能:
总结
避开上述三个陷阱,可以确保Office 365项目的成功实施,消除问题,获得满意的终端用户体验。面向Office 365的解决方案现已内置在Riverbed Application Performance Platform™中,其中为您提供了多种工具,助您打造新的灵活运营模式,将应用性能转化为竞争优势。
好文章,需要你的鼓励
在迪拜Gitex 2025大会上,阿联酋成为全球AI领导者的雄心备受关注。微软正帮助该地区组织从AI实验阶段转向实际应用,通过三重方法提供AI助手、协同AI代理和AI战略顾问。微软已在阿联酋大举投资数据中心,去年培训了10万名政府员工,计划到2027年培训100万学习者。阿联酋任命了全球首位AI部长,各部门都配备了首席AI官。微软与政府机构和企业合作,在公民服务和金融流程等领域实现AI的实际应用,构建全面的AI生态系统。
Google DeepMind团队发布了EmbeddingGemma,这是一个仅有3.08亿参数的轻量级文本理解模型,却能达到7亿参数模型的性能水平。该模型在权威的多语言文本嵌入基准测试中排名第一,支持250多种语言,特别适合移动设备部署。研究团队通过创新的编码器-解码器初始化、三重损失函数训练和模型融合技术,实现了性能与效率的完美平衡,为AI技术普及化开辟了新路径。
苹果与俄亥俄州立大学研究人员发布名为FS-DFM的新模型,采用少步离散流匹配技术,仅需8轮快速优化即可生成完整长文本,效果媲美需要上千步骤的扩散模型。该模型通过三步训练法:处理不同优化预算、使用教师模型指导、调整迭代机制来实现突破。测试显示,参数量仅1.7亿至17亿的FS-DFM变体在困惑度和熵值指标上均优于70-80亿参数的大型扩散模型。
日本奈良先端科学技术大学等机构首次深入研究AI编程工具Claude Code在真实开源项目中的表现。通过分析567个代码贡献,发现83.8%被成功接受,54.9%无需修改直接使用。AI擅长重构、测试和文档工作,但需要人工修正bug处理、代码风格等问题。研究揭示了AI编程工具的实际能力边界和改进方向。