ZD至顶网网络频道 03月30日 综合消息:赛普拉斯半导体公司近日宣布推出专为物联网 (IoT) 设计的最新微型控制器 (MCU) 架构——PSoC 6。该架构基于超低功耗40纳米处理技术,是业内功耗最低、灵活性最高的解决方案,并且集成了下一代物联网设备所需的安全特性。该架构完美的平衡了性能、成本和功耗的需求,填补了相关领域的空白。双核 ARM Cortex-M4与 Cortex-M0+架构使设计者能够同时优化功耗与性能 。通过独特的PSoC结构及简单易用的软件可配置外设,PSoC 6使得工程师们能够设计出创新的下一代物联网设备。
PSoC 6
赛普拉斯总裁兼首席执行官Hassane El-Khoury表示:“作为物联网无线解决方案领域的领导者,我们第一时间认识到,客户需要一个能够在兼顾安全功能的同时更好地平衡性能与功耗的处理器解决方案。我们的PSoC 6微型控制器架构专为解决这些问题而设计,这让我们丰富的物联网嵌入式系统解决方案组合如虎添翼。”
树立业界领先的最新超低功耗标杆
赛普拉斯专有的超低功耗40纳米SONOS处理技术使PSoC 6 微型控制器架构能够在ARM Cortex-M4 和 Cortex-M0+ 内核上分别以22 µA/MHz和15 µA/MHz 工作电流实现业内领先的功耗。凭借动态电压与频率定标 (DVFS) 技术,PSoC 6 微型控制器架构可同时提供保证核心性能与低功耗所需的处理能力。双核架构实现了功耗优化的系统设计,其中的辅助内核可以用作降低主内核功耗,使主内核进入睡眠状态。
可信赖的解决方案助力提高物联网安全性
PSoC 6提供一个基于硬件的可信任执行环境 (TEE),具有安全启动能力与集成安全数据存储的能力,以保护固件、应用程序和安全资产,比如密钥等。PSoC 6 在一个专为分担计算密集型任务而设计的集成硬件协同处理器中执行多种行业标准对称和非对称加密算法,包括椭圆曲线加密(ECC)、高级加密标准(AES)以及安全散列算法(SHA 1、2、3)。该架构无需外部存储器或安全元件就能支持多个同步安全环境,并且为多个独立的用户定义安全策略提供可扩展的安全存储。
赛普拉斯微型控制器业务部门副总裁John Weil表示:“每台联网设备都可能存在潜在的网络隐患。由于存在不计其数的潜在隐患,因此安全性变得至关重要,而且物联网设备最底层的安全设计成为重中之重。我们设计的PSoC 6可以帮助我们的客户保护产品免受网络攻击,同时能够促使他们利用灵活、方便易用的PSoC架构创建前所未有的创新物联网设备。”
通过直观的软件支持实现前所未有的创新型物联网设备
除了顶尖的灵活性与易使用性之外,PSoC 6还能推动创造出差异化的、前瞻性的物联网设备。软件定义的外设可用于创建自定义模拟前端 (AFEs),或如电子墨水显示器等创新系统组件的数字接口。该架构提供灵活的无线连接选项,包括全集成低功耗蓝牙 (BLE) 5.0等。PSoC 6 微型控制器架构采用了赛普拉斯业内领先的最新一代CapSense®电容感应技术,支持强大而稳定的先进触摸和手势界面。赛普拉斯PSoC Creator™ 集成设计环境 (IDE)和各种ARM生态系统均支持该架构。
供货情况
PSoC 6芯片、套件与软件目前已经开始向部分战略合作伙伴提供。更多关于PSoC 6信息,敬请访问www.cypress.com/PSoC6 ,注册参与PSoC 6早期使用者项目(PSoC 6 Early Adopter Program)后可获取更多资料。该产品预计于2017年第四季度初全面投产。
好文章,需要你的鼓励
Docker公司通过增强的compose框架和新基础设施工具,将自己定位为AI智能体开发的核心编排平台。该平台在compose规范中新增"models"元素,允许开发者在同一YAML文件中定义AI智能体、大语言模型和工具。支持LangGraph、CrewAI等多个AI框架,提供Docker Offload服务访问NVIDIA L4 GPU,并与谷歌云、微软Azure建立合作。通过MCP网关提供企业级安全隔离,解决了企业AI项目从概念验证到生产部署的断层问题。
中科院联合字节跳动开发全新AI评测基准TreeBench,揭示当前最先进模型在复杂视觉推理上的重大缺陷。即使OpenAI o3也仅获得54.87%分数。研究团队同时提出TreeVGR训练方法,通过要求AI同时给出答案和精确定位,实现真正可追溯的视觉推理,为构建更透明可信的AI系统开辟新路径。
马斯克的AI女友"Ani"引爆全球,腾讯RLVER框架突破情感理解边界:AI下半场竞争核心已转向对人性的精准把握。当技术学会共情,虚拟陪伴不再停留于脚本应答,而是通过"心与心的循环"真正理解人类孤独——这背后是强化学习算法与思考模式的化学反应,让AI从解决问题转向拥抱情感。
PyVision是上海AI实验室开发的革命性视觉推理框架,让AI系统能够根据具体问题动态创造Python工具,而非依赖预设工具集。通过多轮交互机制,PyVision在多项基准测试中实现显著性能提升,其中在符号视觉任务上提升达31.1%。该框架展现了从"工具使用者"到"工具创造者"的AI能力跃迁,为通用人工智能的发展开辟了新路径。