今天,我想从Gartner最新发布的2016应用性能魔力象限报告谈起。最新报告显示,无论是在关键产品能力还是作为魔力象限的挑战者,Riverbed SteelCentral应用性能管理套件的位置都较前几年有所上升。《Gartner同业洞察报告》印证了这一变化——客户认可魔力象限报告中对Riverbed的评估结果,并从使用者体验出发将SteelCentral应用性能管理列入应用性能管理十佳供应商行列。作为应用性能管理解决方案的领导者,SteelCentral受到分析师和客户的高度认可,背后的原因多种多样。但我想强调的是2016年SteelCentral应用性能管理套件在其发展历程中具有里程碑意义的几件大事:
SteelCentral应用性能管理“复兴行动”始于2014年,旨在创建一个在现代应用环境中易于部署、使用和管理的统一平台。随着对核心应用性能管理组件AppResponse、AppInternals和Portal进行重新设计和紧密集成,这一行动现已圆满完成:
一直以来,了解用户历程对实现数字化转型这项长期工作至关重要。加入Aternity组件的SteelCentral能够帮助用户获得前所未有的可视化水平,全面掌握用户与用户设备中各类应用的交互状况。这一独特优势与SteelCentral应用性能管理所具有的捕捉、分析每种用户事务的能力深度融合,使该系统成为应用性能管理市场上最全面的数字化体验监测平台。
2016年是SteelCentral应用性能管理的关键一年,2017我们将持续拓展现有平台的各类性能,积蓄能量,继续前进。2017年,该平台将有如下重大变化:
跨云和本地平台部署使应用复杂性进一步提高。此外,容器技术和按需提供的PaaS (平台即服务)资源使得底层环境存在时间变短。鉴于下一代应用的特质,我们引入了性能图表,借助大数据分析来确认并预测应用环境中可能出现的各类瓶颈。我们还将借助额外监测数据持续提升性能图表功能,帮助用户诊断各类更广泛的应用性能问题。SteelCentral Aternity用户设备数据将被整合至应用性能管理平台,从而提高跨域分析能力。
我们还会持续改善开发运维体验,实现整个工具链内的性能数据可用性。我们的目标是帮助客户实现开发—测试—部署周期的完整性能分析,进一步优化应用质量和发布节奏。
好文章,需要你的鼓励
CoreWeave发布AI对象存储服务,采用本地对象传输加速器(LOTA)技术,可在全球范围内高速传输对象数据,无出口费用或请求交易分层费用。该技术通过智能代理在每个GPU节点上加速数据传输,提供高达每GPU 7 GBps的吞吐量,可扩展至数十万个GPU。服务采用三层自动定价模式,为客户的AI工作负载降低超过75%的存储成本。
IDEA研究院等机构联合开发了ToG-3智能推理系统,通过多智能体协作和双重进化机制,让AI能像人类专家团队一样动态思考和学习。该系统在复杂推理任务上表现优异,能用较小模型达到卓越性能,为AI技术的普及应用开辟了新路径,在教育、医疗、商业决策等领域具有广阔应用前景。
谷歌DeepMind与核聚变初创公司CFS合作,运用先进AI模型帮助管理和改进即将发布的Sparc反应堆。DeepMind开发了名为Torax的专用软件来模拟等离子体,结合强化学习等AI技术寻找最佳核聚变控制方式。核聚变被视为清洁能源的圣杯,可提供几乎无限的零碳排放能源。谷歌已投资CFS并承诺购买其200兆瓦电力。
上海人工智能实验室提出SPARK框架,创新性地让AI模型在学习推理的同时学会自我评判,通过回收训练数据建立策略与奖励的协同进化机制。实验显示,该方法在数学推理、奖励评判和通用能力上分别提升9.7%、12.1%和1.5%,且训练成本仅为传统方法的一半,展现出强大的泛化能力和自我反思能力。