应用性能公司Riverbed日前宣布推出Riverbed SteelCentral应用性能指挥中心,进一步拓展其全面性能监测与管理解决方案,解决企业在管理新兴移动和云技术方面存在的盲点。为满足这些需求,Riverbed推出了SteelCentral SaaS解决方案,提供云性能管理。同时利用SteelCentral Aternity,将监测功能扩展到任意终端设备。
Riverbed公司高级副总裁兼SteelCentral业务总经理Mike Sargent指出:“企业现在正加速采用云技术和移动技术,以便提高敏捷性和灵活性,这也同时改变着整体IT环境。传统监测方法的可用性和性能都需要适应这些技术。我们此次发布的新品将能够帮助企业利用这些颠覆性技术,同时又能够消除关键盲点,帮助企业积极主动地管理他们关键应用上的整体端到端性能。”
SteelCentral SaaS:面向云内外的全面可视化。Riverbed推出的SteelCentral SaaS将终端用户体验和应用监测、网络性能监测结合起来。由于企业越来越依赖云来帮助他们缩短应用发布周期和降低成本,那么保持对多层应用的统一可视化就具有非常大的挑战。传统的APM(应用性能管理)工具对于影响云托管应用性能的网络性能问题完全无知。而作为SaaS解决方案,SteelCentral则可实现应用、终端用户和网络性能的可视化,为企业提供针对云应用的全面监测方案。
终端用户体验监测:通过新近收购的终端用户体验(EUE)监测方案领先提供商Aternity,Riverbed将SteelCentral扩展到包含物理、虚拟或移动设备上运行的所有应用的EUE监测。通过新增SteelCentral Aternity,SteelCentral能够从各种来源广泛收集数据,包括应用服务器、应用程序代码、UC系统、局域网、广域网、浏览器和终端用户设备,帮助客户快速发现和修复性能问题,无论问题发生在哪里。
好文章,需要你的鼓励
IBM Spyre加速器将于本月晚些时候正式推出,为z17大型机、LinuxONE 5和Power11系统等企业级硬件的AI能力提供显著提升。该加速器基于定制芯片的PCIe卡,配备32个独立加速器核心,专为处理AI工作负载需求而设计。系统最多可配置48张Spyre卡,支持多模型AI处理,包括生成式AI和大语言模型,主要应用于金融交易欺诈检测等关键业务场景。
微软研究院提出潜在分区网络(LZN),首次实现生成建模、表示学习和分类任务的真正统一。该框架通过共享高斯潜在空间和创新的潜在对齐机制,让原本独立的AI任务协同工作。实验显示LZN不仅能增强现有模型性能,还能独立完成各类任务,多任务联合训练效果更是超越单独训练。这项研究为构建下一代通用AI系统提供了新的架构思路。
意大利初创公司Ganiga开发了AI驱动的智能垃圾分拣机器人Hoooly,能自动识别并分类垃圾和可回收物。该公司产品包括机器人垃圾桶、智能盖子和废物追踪软件,旨在解决全球塑料回收率不足10%的问题。2024年公司收入50万美元,已向谷歌和多个机场销售超120台设备,计划融资300万美元并拓展美国市场。
上海AI实验室开发的VLAC模型让机器人首次具备真实世界自主学习能力。该系统如同给机器人配备智能导师,能实时评估动作效果并从中学习。在四个操作任务测试中,机器人成功率从30%提升至90%,仅需200次练习。技术结合视觉、语言理解和动作生成,支持跨场景适应和人机协作,为家庭服务、医疗护理等领域应用奠定基础。