应用性能公司Riverbed日前宣布推出Riverbed SteelCentral应用性能指挥中心,进一步拓展其全面性能监测与管理解决方案,解决企业在管理新兴移动和云技术方面存在的盲点。为满足这些需求,Riverbed推出了SteelCentral SaaS解决方案,提供云性能管理。同时利用SteelCentral Aternity,将监测功能扩展到任意终端设备。
Riverbed公司高级副总裁兼SteelCentral业务总经理Mike Sargent指出:“企业现在正加速采用云技术和移动技术,以便提高敏捷性和灵活性,这也同时改变着整体IT环境。传统监测方法的可用性和性能都需要适应这些技术。我们此次发布的新品将能够帮助企业利用这些颠覆性技术,同时又能够消除关键盲点,帮助企业积极主动地管理他们关键应用上的整体端到端性能。”
SteelCentral SaaS:面向云内外的全面可视化。Riverbed推出的SteelCentral SaaS将终端用户体验和应用监测、网络性能监测结合起来。由于企业越来越依赖云来帮助他们缩短应用发布周期和降低成本,那么保持对多层应用的统一可视化就具有非常大的挑战。传统的APM(应用性能管理)工具对于影响云托管应用性能的网络性能问题完全无知。而作为SaaS解决方案,SteelCentral则可实现应用、终端用户和网络性能的可视化,为企业提供针对云应用的全面监测方案。
终端用户体验监测:通过新近收购的终端用户体验(EUE)监测方案领先提供商Aternity,Riverbed将SteelCentral扩展到包含物理、虚拟或移动设备上运行的所有应用的EUE监测。通过新增SteelCentral Aternity,SteelCentral能够从各种来源广泛收集数据,包括应用服务器、应用程序代码、UC系统、局域网、广域网、浏览器和终端用户设备,帮助客户快速发现和修复性能问题,无论问题发生在哪里。
好文章,需要你的鼓励
当超级计算机被压缩进一个比书本还小的盒子里,这画面有多炸裂?想象一下,你桌面上摆着的不是什么花瓶摆件,而是一台能跑200B参数AI推理的"超算怪兽"——这就是我们今天要聊的主角:华硕Ascent GX10。
Adobe研究院与UCLA合作开发的Sparse-LaViDa技术通过创新的"稀疏表示"方法,成功将AI图像生成速度提升一倍。该技术巧妙地让AI只处理必要的图像区域,使用特殊"寄存器令牌"管理其余部分,在文本到图像生成、图像编辑和数学推理等任务中实现显著加速,同时完全保持了输出质量。
香港科技大学团队开发出A4-Agent智能系统,无需训练即可让AI理解物品的可操作性。该系统通过"想象-思考-定位"三步法模仿人类认知过程,在多个测试中超越了需要专门训练的传统方法。这项技术为智能机器人发展提供了新思路,使其能够像人类一样举一反三地处理未见过的新物品和任务。