私有云的概念在于由企业内部IT部门购买服务器、存储与网络产品,从而构建自有云体系。然而事实证明,这并不是一项高效的解决方案。
最近五年来,私有云一直专注于构建自己的IaaS方案。然而三大云服务供应商的核心重点早已超越核心计算服务,开始向其它新兴领域拓展。虽然规模不及AWS与Azure,但谷歌提供一套非常有趣的机器学习服务组合。合理的价格与易于使用的框架令其获得巨大吸引力,而AlphaGo战胜冠军围棋选手也再次证明了谷歌在这场AI驱动革命中占据着领导地位。
而微软则凭借区块链充分运用自身中间件、加密与编程语言的力量,这使其拥有吸引金融服务及政府机构的可观潜力。
与此同时,AWS则正大踏步迈入智能家居与办公环境,具体方案为搭载AI方案Alexa的Echo产品。用户能够利用Alexa提供的API将Echo与自己的特斯拉汽车对接,甚至能够让后者自动驶出车库。
下面探讨私有云将逐步走向消亡的三项核心因素:
1. 创新:云供应商拥有极为可观的人才及技术积累,亦具备雄厚的资本不断构建新型功能——这些是私有云供应商永远无法实现的竞争优势。
2. 规模化:机器学习需要利用大量数据进行训练,而公有云庞大的用户基础能够有效解决数据集需求。同样的,如此规模的服务器集群远远超出了任何单一企业的实现能力。
3. 网络效应:通过对不同输入数据及客户使用活动的支持,云服务供应商能够极大丰富自身产品。这种网络效应远远超出了单一企业的实现能力。私有云的核心诉求在于解决底层硬件需求以解决业务问题,这意味着其需要将大量精力投入至基础堆栈调试当中,导致对具体服务的关注能力有所缺失。
企业IT部门寄希望于利用云服务供应商的“堆栈基础”解决业务问题,而私有云IaaS集群则根本不可能实现同样的功能。
毫无疑问,如今的数据中心发展已经达到峰值,惟一的问题是其将以怎样的方式走向衰退。因此立足于未来五到十年,身披私有云概念的自有基础设施恐怕只能是一场看起来很美的镜花水月。
好文章,需要你的鼓励
腾讯混元等机构联合提出PREF-GRPO方法,首次采用成对偏好比较替代传统评分,成功解决AI图像生成中的奖励欺骗问题。同时构建UNIGENBENCH评测基准,包含600测试案例和27个细粒度评价维度,为行业提供更精确的模型评估标准。实验显示新方法在多项指标上显著优于传统方法,特别在复杂任务上提升明显。
亚马逊发布Lens Live AI功能,用户可通过手机摄像头扫描任何物品进行实时购物。该技术利用人工智能识别用户拍摄的物品,并在亚马逊平台上匹配相关商品,提供即时购买选项。这一创新功能将大幅简化购物流程,用户只需"看到即可购买",为在线购物体验带来革命性改变。
蚂蚁集团与西湖大学联合开发的AWORLD开源框架,通过分布式并行训练将AI助手的练习效率提升14.6倍,成功将Qwen3-32B模型在GAIA测试中的准确率从21.59%提升至32.23%,在最困难任务上甚至超越了GPT-4o等商业AI产品,为"从练习中学习"的AI训练理念提供了实用解决方案。