私有云的概念在于由企业内部IT部门购买服务器、存储与网络产品,从而构建自有云体系。然而事实证明,这并不是一项高效的解决方案。

最近五年来,私有云一直专注于构建自己的IaaS方案。然而三大云服务供应商的核心重点早已超越核心计算服务,开始向其它新兴领域拓展。虽然规模不及AWS与Azure,但谷歌提供一套非常有趣的机器学习服务组合。合理的价格与易于使用的框架令其获得巨大吸引力,而AlphaGo战胜冠军围棋选手也再次证明了谷歌在这场AI驱动革命中占据着领导地位。
而微软则凭借区块链充分运用自身中间件、加密与编程语言的力量,这使其拥有吸引金融服务及政府机构的可观潜力。
与此同时,AWS则正大踏步迈入智能家居与办公环境,具体方案为搭载AI方案Alexa的Echo产品。用户能够利用Alexa提供的API将Echo与自己的特斯拉汽车对接,甚至能够让后者自动驶出车库。
下面探讨私有云将逐步走向消亡的三项核心因素:
1. 创新:云供应商拥有极为可观的人才及技术积累,亦具备雄厚的资本不断构建新型功能——这些是私有云供应商永远无法实现的竞争优势。
2. 规模化:机器学习需要利用大量数据进行训练,而公有云庞大的用户基础能够有效解决数据集需求。同样的,如此规模的服务器集群远远超出了任何单一企业的实现能力。
3. 网络效应:通过对不同输入数据及客户使用活动的支持,云服务供应商能够极大丰富自身产品。这种网络效应远远超出了单一企业的实现能力。私有云的核心诉求在于解决底层硬件需求以解决业务问题,这意味着其需要将大量精力投入至基础堆栈调试当中,导致对具体服务的关注能力有所缺失。
企业IT部门寄希望于利用云服务供应商的“堆栈基础”解决业务问题,而私有云IaaS集群则根本不可能实现同样的功能。
毫无疑问,如今的数据中心发展已经达到峰值,惟一的问题是其将以怎样的方式走向衰退。因此立足于未来五到十年,身披私有云概念的自有基础设施恐怕只能是一场看起来很美的镜花水月。
好文章,需要你的鼓励
Python通过PEP 810提案正式引入惰性导入功能,允许程序延迟加载导入库直到实际需要时才执行,而非在启动时全部加载。该提案由指导委员会成员Pablo Salgado于10月3日提出并于11月3日获批。新功能采用选择性加入方式,保持向后兼容性的同时解决了社区长期面临的启动时间过长问题,标准化了当前分散的自定义解决方案。
蒙特利尔多机构联合研究团队通过AInstein框架首次大规模验证了大语言模型的科学推理能力。研究使用1214篇ICLR论文测试AI提取研究问题和生成解决方案的能力,发现顶级AI模型成功率达74%,能够提出创新性技术方案而非简单模式匹配。研究证实AI具备真正的科学推理能力,但也揭示了其对问题表述敏感、推理稳定性有限等局限性。
Valve最新Steam硬件软件调查显示,Linux用户占比达到3.05%,较上月增长0.37个百分点,相比去年同期增长约50%。游戏网站Boiling Steam分析显示,Windows游戏在Linux平台兼容性达历史最高水平,近90%的Windows游戏能在Linux上启动运行,仅约10%游戏无法启动。
这项研究提出了MADPO方法,解决了AI训练中的"一刀切"问题。传统方法对所有训练案例使用相同强度,导致简单案例过度学习、复杂案例学习不足。MADPO通过两步训练:先评估案例难度,再据此调整学习强度,实现"因材施教"。实验显示该方法在不同质量数据上均有显著提升,最高达33.3%,为AI精细化训练提供了新思路。