ZD至顶网网络频道 08月22日 编译:近期,澳大利亚研究机构Data61和悉尼大学的计算机科研人员评估了四个主流OpenFlow控制器:NOX、Maestro、Floodlight和Beacon,最终得出结论,认为OpenFlow架构的效率低,限制了性能的改善,而且还会消耗不必要的功率。
研究人员在ArXiv上发表了针对此次测试的论文,其中OpenDaylight也是测试对象之一,但其性能未包括在报告中,报告还表示,“它的性能太差,拿出来比较不能提供任何有用的东西。”
值得关注的是,无论是在基于Tilera的芯片网络处理器上运行,还是在基于E5-2450至强服务器上运行,在所有测试的控制器中并没有一款控制器能够达到最高线速。
就CBench软件定义网络(SDN)控制器性能指标而言,最佳Tilera设置仅仅勉强达到了每秒500万个请求,与每秒2900万请求的最高线速比不相去甚远。
而英特尔过去在数据包处理方面所付出的工作终于得到了回报,在x86设置下,Beacon能达到每秒2000万个请求;而其它控制器所能达到的最大值仅为每秒700万的请求。
由于SDN控制器处理网络数据包时用的是流量概念,就是说它们必须记住MAC地址,以便跟踪通信,而以太网交换机则只需要知道将数据包转发到哪个端口,另外,网络可扩展性也是一个大问题。
在性能指标测试里,在1000万个唯一MAC地址的请求下,没有控制器可以保持其峰值性能,基于Java的控制器(Bean和Floodlight)则在该规模上几乎陷于完全停顿状态。
该文章还指出,OpenFlow的本身存在结构性的低效率问题。文章作者提到了序列化: I/O线程,以及“学习中的交换应用里的关键数据结构:哈希表”。
据称,序列化对开销的影响最大,最有效的控制器也在数据包序列化上花了五分之一的时间,此限制是这些控制器面向对象设计原则固有的。每个独立的数据包都被控制器作为一个单独的对象处理,从而会对每个数据包引入不可忽视的开销。
最后,作者还提出了一种全新的SDN控制器设计,指出:“要用预分配的缓冲区处理新到达的数据包,而不是将其作为新的对象处理。控制器还应该考虑硬件特性,以达到在多核平台里限制高速缓存未分配的现象,以便可利用多核平台的网络芯片。”
好文章,需要你的鼓励
邻里社交应用Nextdoor推出重新设计版本,新增本地新闻、实时警报和名为"Faves"的AI功能,用于发现本地商户和地点。该应用与3500家本地出版商合作提供新闻内容,通过Samdesk和Weather.com提供天气、交通、停电等实时警报。Faves功能利用15年邻里对话数据训练的大语言模型,为用户提供本地化AI推荐服务,帮助用户找到最佳餐厅、徒步地点等本地信息。
Skywork AI推出的第二代多模态推理模型R1V2,通过创新的混合强化学习方法,成功解决了AI"慢思考"策略在视觉推理中的挑战。该模型在保持强大推理能力的同时有效控制视觉幻觉,在多项权威测试中超越同类开源模型,某些指标甚至媲美商业产品,为开源AI发展树立了新标杆。
英国生物银行完成了世界上最大规模的全身成像项目,收集了10万名志愿者的超过10亿次扫描数据,用于研究人体衰老和疾病过程。该项目历时11年,每次扫描耗时5小时,投资6200万英镑。目前已有8万人的成像数据供全球研究人员使用,剩余数据将于年底前发布。项目已开发出能预测38种常见疾病的AI工具,并在心脏病、痴呆症和癌症诊断方面取得突破。
这项由北京大学等多所高校联合完成的研究,首次对OpenAI GPT-4o的图像生成能力进行了全面评估。研究团队设计了名为GPT-ImgEval的综合测试体系,从文本转图像、图像编辑和知识驱动创作三个维度评估GPT-4o,发现其在所有测试中都显著超越现有方法。研究还通过技术分析推断GPT-4o采用了自回归与扩散相结合的混合架构,并发现其生成图像仍可被现有检测工具有效识别,为AI图像生成领域提供了重要的评估基准和技术洞察。