通常,虚拟化讨论的范畴是通过虚拟机划分并行但与运行环境无关的大型同类微处理器。但是从广义上来看,虚拟化还可以表示替代原有服务,一般是部署在本地服务器或基于物理网络基础架构上,但即使云中分配的服务也可被取代。
那么,问题来了:对于企业和网络运营商而言,有多少物理网络基础架构可以按照这种方式进行虚拟化?
答案是:几乎所有东西都可以虚拟化。事实上,网络功能虚拟化这个术语恰恰就准确地描述了我们这里所指的问题。显然,在虚拟网络基础架构流行之前,还有一些问题需要考虑,但实际上考虑这些问题没太大必要。
使用云网络,或是网络即服务如何?两者都可以。我敢打赌这是所有环境所有网络的最终归属,软件定义网络将最终激励创新,并且带来很多应有的好处。
这让我想起最近一直在问客户的问题:2020年的网络将会是什么样子呢?或者更进一步,2025年的网络会是什么样子呢?
为了寻找到答案,先来看一些倍受关注的重大趋势:
看到这些影响,就很容易准确地预料到物理网络基础架构在未来10年将发展壮大的趋势。例如:
其他物理网络基础架构又会有什么变化?
所有其他的基础架构都会虚拟化和迁移到云中,包括网络管理、性能优化、分析、安全和SDN控制器本身。公有云和私有云都可以,但是选择使用公有云的会越来越多,因为公有云模式具有经济性、可靠性和按需可扩展性等内在特性。由于有了超高性能的互联网链路(10Gbps及更高速网络都将普遍应用),因此它与本地实现相比不会有明显劣势。本地设备和物理基础架构方面节省的成本可用于其他更好的战略需要。
有了这个基础之后,SDN就成为将这种愿景变为现实的催化剂和驱动力。SDN本质在于网络基础架构的基础可编程性,因此这种基础架构的差异性越少越好。
可扩展性表示可以增加更多相同的元素。同样,这些元素就是AP和交换机——基于SDN的AP和交换机,仅此而已。先进的处理器和接口本身的性能,加上SDN本身的灵活性和可扩展性,就是实现最佳网络的重要指标。
到目前为止,我们所做的工作已接近完整了。现在变化的速度已经在我们可承受的范围之内,即使是技术方面的变化也一样。比较明确的一点是,迁移到SDN已经是现代网络发展的最重要方向。再加上前面所提到的硬件功能的发展,我们很容易看到SDN作用的扩大正带来更多的好处。
好文章,需要你的鼓励
YouTube开始推出肖像检测工具,帮助创作者识别和举报使用其面部特征的AI生成视频。该系统类似于版权检测机制,目前处于测试阶段,仅向部分创作者开放。用户需要提供政府身份证件照片和面部视频来验证身份。系统会标记疑似包含用户肖像的视频,但无法保证100%准确识别AI内容。YouTube将根据多项因素决定是否移除举报的视频。
华中科技大学研究团队发现,通过让AI模型学习解决几何问题,能够显著提升其空间理解能力。他们构建了包含约30000个几何题目的Euclid30K数据集,使用强化学习方法训练多个AI模型。实验结果显示,几何训练在四个空间智能测试基准上都带来显著提升,其中最佳模型达到49.6%准确率,超越此前最好成绩。这项研究揭示了基础几何知识对培养AI空间智能的重要价值。
谷歌宣布在AI Studio平台中引入"氛围编程"体验,让编程和非编程用户都能更轻松地开发应用程序。用户可通过简单提示生成可运行的应用,新功能包括应用画廊、模型选择器、安全变量存储等。平台还添加了模块化"超能力"功能和"手气不错"按钮来激发创意。完成的原型应用可一键部署到谷歌云运行平台。此次更新正值业界期待谷歌即将发布Gemini 3.0大语言模型。
中国人民大学研究团队开发了Tool-Light框架,通过信息熵理论解决AI工具使用中的过度调用、调用不足和过度思考问题。该框架采用熵引导采样和两阶段自演化训练,让AI学会合理使用外部工具。在10个推理任务测试中,Tool-Light显著提升了AI的效率和准确性,为AI工具集成推理提供了新的解决方案。