在物联网时代如何打造安全的数据中心?
作者:邹铮翻译
毫无疑问,物联网(IoT)将会影响你的安全数据中心战略。即使你的企业没有在收集面向消费者的物联网数据,IoT设备仍然非常有可能会连接到你的企业数据中心,安全读卡器、叉车、环境传感器和手持式库存设备等都会发送信息到数据中心。
毫无疑问,物联网(IoT)将会影响你的安全数据中心战略。即使你的企业没有在收集面向消费者的物联网数据,IoT设备仍然非常有可能会连接到你的企业数据中心,安全读卡器、叉车、环境传感器和手持式库存设备等都会发送信息到数据中心。下面让我们来看看物联网带来的一些安全问题。
加密与安全的数据中心
IT管理员必须考虑的问题是:对于传输到数据中心(支持IoT设备或与之整合)内应用的未加密数据,他们应该如何管理?IoT设备通常处于劣势,因为在默认情况下它们不会加密数据。当IoT制造商在设计小型移动设备时,他们通常会避免添加加密等功能,这可能对数据中心的安全性带来严重的影响。很多时候,IoT制造商会认为从其设备收集的数据是低价值的数据,至少对于他们是这样,这让他们可以避免部署安全控制。
然而,这种观念是不正确的,所有数据都有与其相关的一定水平的责任。安全人员需要对每个应用执行评估,并了解其所传输的信息的影响。毕竟我们很难知道入侵者的动机,例如,攻击者可能会瞄准制造业务物流相关的元数据,那么,叉车的移动信息对于攻击者就是有价值的信息,让他可以扰乱制造业务。另一个潜在有价值的信息可能是管理人员的习惯,以便攻击者可创建更好的网络钓鱼攻击。
企业可制定政策要求加密IoT设备的网络流量,这可以防止攻击者从明文通信中获取有价值的信息。最好的办法是让IoT设备本身支持基于主机的加密。但是,由于在IoT领域缺乏标准,以及加密所需的处理要求和电池要求,在IoT通信中很难部署终端到终端加密。
另一种替代方法是在网络边缘加密IoT数据。目前有几种方法可以做到这一点,其中一种简单的方法是在IoT虚拟LAN(VLAN)和数据中心之间建立IPsec隧道。还有一种方法是创建覆盖来分隔和加密IoT流量到单独的虚拟可扩展局域网(VXLAN),这种方法中是假定所有IoT设备都将位于单独的VLAN中。为了实施这样的政策,企业应该考虑部署某种形式的网络访问控制(NAC)来防止未经授权的IoT设备连接到非IoT VLAN。
但NAC并不总是可行或者可用。另一种选择是隔离IoT应用到单个数据中心VLAN,类似的做法是隔离服务器;目前这种方法主要用来为支付卡行业(PCI)数据创建高安全区。企业可制定路由政策来加密所有路由到IoT安全区的数据,这类似于加密所有发送到PCI安全区的明文数据。
恶意IoT用户
另外一个更加难以抵御的威胁是内部恶意IoT用户。在这里,企业面临的挑战之一是通过非技术措施执行安全政策,这是因为,为了拥有安全的数据中心,企业既需要书面政策来规定IoT的使用,还要有成熟的程序来保护对IoT设备的物理访问。如同所有政策一样,这里也有挑战,例如当设备被感染或当授权最终用户有意执行恶意活动时。
第一层防御始终应该是基于应用的访问控制。该应用应该确保授权用户只有适当的权限,而不能对系统执行任何破坏性操作。这里的目标是防止受感染设备发出破坏性授权命令。
为此,供应商向其安全产品增加了功能来检查常用IoT命令流量。试想一下,当非法承包商打算破坏变电站的监视控制和数据采集(SCADA)网络时,他们可能试图设置一个不可接受的温度计,而我们可制定相关规定将防止这种活动,以及限制或终止他们对网络的访问。
合规性
如果没有围绕合规性的讨论,那么,有关创建安全数据中心的讨论将是不完整的。合规性是很重要的话题,特别是如果你的企业在受监管的行业,例如能源、健康或支付卡处理。企业应该制定专门适用于其特定IoT环境的政策。同时,对于任何政策,网络管理员应确保他们可以执行政策中的内容,而不是采用工作人员无法通过收集系统数据验证的做法。
根据Gartner表示,到2020年将有200亿设备连接互联网,这是目前数据的四倍多。现在企业应该开始做好准备以确保安全的数据中心。
0赞好文章,需要你的鼓励
推荐文章
“Mercor正在训练的模型,比人类更懂如何预测工作表现。”
Xbox 部门推出了名为 Muse 的生成式 AI 模型,旨在为游戏创造视觉效果和玩法。这一举措反映了微软全面拥抱 AI 技术的战略,尽管游戏开发者对 AI 持谨慎态度。Muse 不仅可能提高游戏开发效率,还有望实现老游戏的现代化改造,但其实际效果和对行业的影响仍有待观察。
Sonar收购AutoCodeRover,旨在通过自主AI代理增强其代码质量工具。这项收购将使Sonar客户能够自动化调试和问题修复等任务,让开发者将更多时间用于改进应用程序而非修复bug。AutoCodeRover的AI代理能够自主修复有问题的代码,将与Sonar的工具集成,提高开发效率并降低成本。
人工智能正在推动数据中心的变革。为满足 AI workload 的需求,数据中心面临前所未有的电力消耗增长、散热压力和设备重量挑战。应对这些挑战需要创新的解决方案,包括 AI 专用硬件、可再生能源、液冷技术等。同时,数据中心还需平衡监管压力和社区关切。未来数据中心的发展将决定 AI 技术能否实现其变革性潜力。