软件定义网络(SDN)被视作互联网的秘密武器。尽管SDN面临发展疲软,技术出现问题等状况,不过到目前为止,企业仍对其兴趣满满。
这可能是由于SDN带来的节省成本、提高安全性并实现真正的敏捷的优势。不过话又说回来,这种高复杂性以及惊人的许可成本的SDN真的是企业想要的吗?
虽然部署SDN和SDDC带来的好处足够诱人,但也带来了新的挑战。在真正迈入SDN之前,仍有企业需要解决的一些关键点。
你的企业IT团队关注KTLO,保持灯一直亮的时间是多久?如果IT团队无法解决新的要求,那么自然也没有时间来处理SDN带来的新问题。
也许你会问“SDN不是会让我们更具效率吗?”也许如此,不过需要花费你一些时间。除非你构建一个新的数据中心,否则不要以为这是个快活儿。即使在虚拟化做的非常好的企业里,也总会有历史遗留问题。
战胜旧的虚拟化环境
这引出了另一个关键点:“遗留”问题。如果还有上个世纪的组装机用的胶带,那你就麻烦了。为此你不得不让两个环境平行存在,等待更换主机的时间。现实是,大多数组织需要将两个生态系统融合,并完善长期的架构策略。
当前的虚拟化环境运行状况如何?如果它过时了,那么你仍将面临同样多的问题,甚或比合并物理基础设施问题更多。此外,如果你尚未对使用虚拟化提供自动化和自助服务功能做好准备,那部署SDN很可能不太明智。如果你的企业想要部署SDN,那么最好还是先从升级现有基础架构,以支持网络功能虚拟化和测试自动化功能开始。
你的企业是否具备专职人员来管理和解决SDN基础架构的问题?你需要一些多面手:了解虚拟化的网络人员以及熟悉网络的系统工程师。如果企业中这两个团队不合作,那么SDN部署的成功概率也是非常小的。
评估SDN带来的冲击性
其次,除非企业理解并致力于DevOps的持续集成和部署,否则融合hyper是行不通的。要不,你将如何实现基础设施代码?
推动SDN部署和融合hyper的主要动力在于企业需要一个反映敏捷和灵活的IT。尽管它的确是网络的未来,但并非所有的企业都为此做好了准备。太突然的转变会让企业陷入基本的管理高效基础设施的囹圄。你在背负技术债务吗?你的企业政策、标准和程序是否正常运作?你的员工是否也跟得上技术的脚步了?对于部署SDN或SDDC,首先要做的还是一步步设计,对当前环境进行分析,从而制定一个能够逐渐解决问题的路线图。
最重要的是,拒绝诱惑,拒绝厂商炒作,认真考虑什么对你的企业来说才是最好的。
好文章,需要你的鼓励
还在为渲染一个3D模型等上几小时吗?还在纠结移动办公就得牺牲性能吗?当AI遇上专业工作站,传统设计流程的游戏规则正在被改写。
伊斯法罕大学研究团队通过分析Google Play商店21款AI教育应用的用户评论,发现作业辅导类应用获得超80%正面评价,而语言学习和管理系统类应用表现较差。用户赞赏AI工具的快速响应和个性化指导,但抱怨收费过高、准确性不稳定等问题。研究建议开发者关注自适应个性化,政策制定者建立相关规范,未来发展方向为混合AI-人类模型。
据报道,OpenAI正与亚马逊洽谈至少100亿美元的融资。亚马逊此前已是Anthropic的最大投资者,并为其建设了110亿美元的数据中心园区。若融资达成,OpenAI将采用AWS的Trainium系列AI芯片。Trainium3采用三纳米工艺,配备八核心和32MB SRAM内存。AWS可将数千台服务器连接成拥有百万芯片的集群。报道未透露具体估值,但OpenAI最近一次二次出售估值已达5000亿美元。
这项由伊利诺伊大学香槟分校等四所院校联合完成的研究,提出了名为DaSH的层次化数据选择方法。该方法突破了传统数据选择只关注单个样本的局限,通过建模数据的天然层次结构,实现了更智能高效的数据集选择。在两个公开基准测试中,DaSH相比现有方法提升了高达26.2%的准确率,同时大幅减少了所需的探索步数。