数据中心的东西向流量与SDN的关系体现在很多SDN解决方案是为了解决该类动态流量带来的挑战的。当前网络行业不缺探讨东西流量和SDN解决方案关系的话题。
为了更详细地凸显这一关系,让我们看看SDN在简化执行和管理东西流量网络策略、动态多租户以及分离每个客户东西流量的能力。
首先,很多数据中心和云的SDN解决方案将网络虚拟化视作未来发展方向。虽然其他网络工程师可能会抗拒并将话题转向虚拟LAN或多协议标签交换VPN(这是多年来物理网络分割的方式),但还是有一个关键的不同,在SDN中网络虚拟化显示了更高级的网络抽象,可帮助简化策略执行和管理。
假设一个组织需要对一个东西流量子集执行策略(比如说在两个工作负载或虚拟机间过滤流量)。网络实施这一策略,包过滤或规则必须在各种设备上进行手动配置。如果其中一个工作负载悄悄的迁移至网络团队,所需的配置可能不会到新设备上(数据包进入网络的设备)。
同时,随着策略发生变化,对每台基础设备进行手动更新包过滤也将成为一个难题。SDN解决方案可是实现更高级的网络抽象,使这些策略应该用于一个集中的虚拟网络的控制器中,而非物理网络。由此产生的策略可能会分放并应用于底层的物理网络中。这简化了策略管理和执行,因为不管工作负载处在网络中的哪个位置,虚拟层的策略执行了。
其次,让我们看看数据中心多租户,当其应用于东西向流量的时候。设想一下用户试图在多租户云中增加多个工作负载或实例(类似Web服务器和数据库服务器这种)。用户可能想要将其特定的工作负载及由其产生的东西流量与其他用户分隔开来。毫无疑问,在传统网络中手动配置这些类型的服务是一种操作负担。
在上百个交换机上配置端口和VLAN需要大量的工作。添加隔离的3层服务或额外的如负载均衡这样的网络功能又进一步将这种问题复杂化。因此,许多SDN解决方案为多租户提供更高级别的抽象,简化了所需连接的部署。更重要的是,这些SDN解决方案将网络视作整体,能够让所需的连接以一种集中化的方式部署或取消,而非在每台设备上。
总而言之,当我们强调东西流量和SDN的关系时,自然避不开经常出现的这两个例子,SDN具备真正的解决方案和适用性。
好文章,需要你的鼓励
IBM首席执行官阿尔温德·克里希纳表示,公司预计通过扩大AI业务规模,到2025年底实现45亿美元的内部成本节约。IBM第二季度营收达170亿美元,同比增长8%。生成式AI业务规模已超75亿美元并持续加速增长。尽管外界担心AI业务可能冲击公司其他板块,克里希纳强调AI技术的融入使IBM产品更具竞争力,咨询业务也因客户对AI转型项目的需求而受益。
普林斯顿大学研究团队开发出"LLM经济学家"框架,首次让AI学会为虚拟社会制定税收政策。系统包含基于真实人口数据的工人AI和规划者AI两层,通过自然语言交互找到最优经济政策,甚至能模拟民主投票。实验显示AI制定的税收方案接近理论最优解,为AI参与社会治理提供了新路径。
面对日益复杂的网络威胁和混合IT环境,HPE提供全面的数据保护解决方案组合。通过网络弹性、高性能恢复和集成生态系统,HPE确保从本地到云端的全环境数据安全。解决方案涵盖HPE Alletra存储、Zerto软件、StoreOnce备份设备等产品,采用多层零信任架构,帮助企业应对勒索软件攻击、基础设施故障和合规挑战。
南开大学研究团队提出了一种新的3D高斯泼溅重光照方法,通过在高斯原语上直接编码离散化SDF值,避免了传统方法需要额外SDF网络的问题。该方法设计了投影一致性损失来约束离散SDF样本,并采用球形初始化避免局部最优。实验表明,新方法在保持高质量重光照效果的同时,仅需现有方法20%的显存,显著提升了训练和渲染效率。