数据中心的东西向流量与SDN的关系体现在很多SDN解决方案是为了解决该类动态流量带来的挑战的。当前网络行业不缺探讨东西流量和SDN解决方案关系的话题。
为了更详细地凸显这一关系,让我们看看SDN在简化执行和管理东西流量网络策略、动态多租户以及分离每个客户东西流量的能力。
首先,很多数据中心和云的SDN解决方案将网络虚拟化视作未来发展方向。虽然其他网络工程师可能会抗拒并将话题转向虚拟LAN或多协议标签交换VPN(这是多年来物理网络分割的方式),但还是有一个关键的不同,在SDN中网络虚拟化显示了更高级的网络抽象,可帮助简化策略执行和管理。
假设一个组织需要对一个东西流量子集执行策略(比如说在两个工作负载或虚拟机间过滤流量)。网络实施这一策略,包过滤或规则必须在各种设备上进行手动配置。如果其中一个工作负载悄悄的迁移至网络团队,所需的配置可能不会到新设备上(数据包进入网络的设备)。
同时,随着策略发生变化,对每台基础设备进行手动更新包过滤也将成为一个难题。SDN解决方案可是实现更高级的网络抽象,使这些策略应该用于一个集中的虚拟网络的控制器中,而非物理网络。由此产生的策略可能会分放并应用于底层的物理网络中。这简化了策略管理和执行,因为不管工作负载处在网络中的哪个位置,虚拟层的策略执行了。
其次,让我们看看数据中心多租户,当其应用于东西向流量的时候。设想一下用户试图在多租户云中增加多个工作负载或实例(类似Web服务器和数据库服务器这种)。用户可能想要将其特定的工作负载及由其产生的东西流量与其他用户分隔开来。毫无疑问,在传统网络中手动配置这些类型的服务是一种操作负担。
在上百个交换机上配置端口和VLAN需要大量的工作。添加隔离的3层服务或额外的如负载均衡这样的网络功能又进一步将这种问题复杂化。因此,许多SDN解决方案为多租户提供更高级别的抽象,简化了所需连接的部署。更重要的是,这些SDN解决方案将网络视作整体,能够让所需的连接以一种集中化的方式部署或取消,而非在每台设备上。
总而言之,当我们强调东西流量和SDN的关系时,自然避不开经常出现的这两个例子,SDN具备真正的解决方案和适用性。
好文章,需要你的鼓励
9月13日的PEC 2025 AI创新者大会暨第二届提示工程峰会上,“年度提问二:新工作时代:AI工作流由谁主导?”从企业实践到技术实现、从业务落地到战略决策,展开了一场高密度的思想碰撞与经验分享,将AI工作流背后的难题和解决路径彻底揭开。
土耳其伊斯坦布尔Newmind AI团队开发出首个专门针对土耳其语的AI幻觉检测系统Turk-LettuceDetect,能够逐字识别AI生成内容中的虚假信息。该系统使用三种不同的AI模型,在包含17790个样本的数据集上训练,最佳模型达到72.66%的检测准确率。这项研究填补了土耳其语AI安全检测的空白,为8000万土耳其语使用者提供了更可靠的AI交互体验。
在9月13日召开的“PEC 2025 AI创新者大会暨第二届提示工程峰会”上,一场主题为“新创意时代,AI如何定义‘第十艺术’?”的圆桌对话引发了热烈讨论。至顶AI实验室联合主理人路飞携六位数字艺术家与AI创业者,围绕AI在艺术中的角色、价值与未来展开了一场深度对谈。
法国研究团队开发了"推理核心"训练环境,专门培养AI的基础推理能力。该系统包含18个核心任务,涵盖逻辑推理、规划、因果分析等领域,能无限生成新题目并精确控制难度。与传统依赖固定题库的方法不同,推理核心专注于培养通用认知能力,并使用专业工具验证答案。GPT-5测试显示任务具有挑战性,为AI推理能力发展开辟新路径。