数据中心的东西向流量与SDN的关系体现在很多SDN解决方案是为了解决该类动态流量带来的挑战的。当前网络行业不缺探讨东西流量和SDN解决方案关系的话题。
为了更详细地凸显这一关系,让我们看看SDN在简化执行和管理东西流量网络策略、动态多租户以及分离每个客户东西流量的能力。
首先,很多数据中心和云的SDN解决方案将网络虚拟化视作未来发展方向。虽然其他网络工程师可能会抗拒并将话题转向虚拟LAN或多协议标签交换VPN(这是多年来物理网络分割的方式),但还是有一个关键的不同,在SDN中网络虚拟化显示了更高级的网络抽象,可帮助简化策略执行和管理。
假设一个组织需要对一个东西流量子集执行策略(比如说在两个工作负载或虚拟机间过滤流量)。网络实施这一策略,包过滤或规则必须在各种设备上进行手动配置。如果其中一个工作负载悄悄的迁移至网络团队,所需的配置可能不会到新设备上(数据包进入网络的设备)。
同时,随着策略发生变化,对每台基础设备进行手动更新包过滤也将成为一个难题。SDN解决方案可是实现更高级的网络抽象,使这些策略应该用于一个集中的虚拟网络的控制器中,而非物理网络。由此产生的策略可能会分放并应用于底层的物理网络中。这简化了策略管理和执行,因为不管工作负载处在网络中的哪个位置,虚拟层的策略执行了。
其次,让我们看看数据中心多租户,当其应用于东西向流量的时候。设想一下用户试图在多租户云中增加多个工作负载或实例(类似Web服务器和数据库服务器这种)。用户可能想要将其特定的工作负载及由其产生的东西流量与其他用户分隔开来。毫无疑问,在传统网络中手动配置这些类型的服务是一种操作负担。
在上百个交换机上配置端口和VLAN需要大量的工作。添加隔离的3层服务或额外的如负载均衡这样的网络功能又进一步将这种问题复杂化。因此,许多SDN解决方案为多租户提供更高级别的抽象,简化了所需连接的部署。更重要的是,这些SDN解决方案将网络视作整体,能够让所需的连接以一种集中化的方式部署或取消,而非在每台设备上。
总而言之,当我们强调东西流量和SDN的关系时,自然避不开经常出现的这两个例子,SDN具备真正的解决方案和适用性。
好文章,需要你的鼓励
OpenAI CEO描绘了AI温和变革人类生活的愿景,但现实可能更复杂。AI发展将带来真正收益,但也会造成社会错位。随着AI系统日益影响知识获取和信念形成,共同认知基础面临分裂风险。个性化算法加剧信息茧房,民主对话变得困难。我们需要学会在认知群岛化的新地形中智慧生存,建立基于共同责任而非意识形态纯洁性的社区。
杜克大学等机构研究团队通过三种互补方法分析了大语言模型推理过程,发现存在"思维锚点"现象——某些关键句子对整个推理过程具有决定性影响。研究表明,计划生成和错误检查等高层次句子比具体计算步骤更重要,推理模型还进化出专门的注意力机制来跟踪这些关键节点。该发现为AI可解释性和安全性研究提供了新工具和视角。
传统数据中心基础设施虽然对企业至关重要,但也是预算和房地产的重大负担。模块化数据中心正成为强有力的替代方案,解决企业面临的运营、财务和环境复杂性问题。这种模块化方法在印度日益流行,有助于解决环境问题、满足人工智能的电力需求、降低成本并支持新一代分布式应用。相比传统建设需要数年时间,工厂预制的模块化数据中心基础设施可在数周内部署完成。
法国索邦大学团队开发出智能医学文献管理系统Biomed-Enriched,通过AI自动从PubMed数据库中识别和提取高质量临床案例及教育内容。该系统采用两步注释策略,先用大型AI模型评估40万段落质量,再训练小型模型处理全库1.33亿段落。实验显示该方法仅用三分之一训练数据即可达到传统方法效果,为医学AI发展提供了高效可持续的解决方案。