数据中心的东西向流量与SDN的关系体现在很多SDN解决方案是为了解决该类动态流量带来的挑战的。当前网络行业不缺探讨东西流量和SDN解决方案关系的话题。
为了更详细地凸显这一关系,让我们看看SDN在简化执行和管理东西流量网络策略、动态多租户以及分离每个客户东西流量的能力。
首先,很多数据中心和云的SDN解决方案将网络虚拟化视作未来发展方向。虽然其他网络工程师可能会抗拒并将话题转向虚拟LAN或多协议标签交换VPN(这是多年来物理网络分割的方式),但还是有一个关键的不同,在SDN中网络虚拟化显示了更高级的网络抽象,可帮助简化策略执行和管理。
假设一个组织需要对一个东西流量子集执行策略(比如说在两个工作负载或虚拟机间过滤流量)。网络实施这一策略,包过滤或规则必须在各种设备上进行手动配置。如果其中一个工作负载悄悄的迁移至网络团队,所需的配置可能不会到新设备上(数据包进入网络的设备)。
同时,随着策略发生变化,对每台基础设备进行手动更新包过滤也将成为一个难题。SDN解决方案可是实现更高级的网络抽象,使这些策略应该用于一个集中的虚拟网络的控制器中,而非物理网络。由此产生的策略可能会分放并应用于底层的物理网络中。这简化了策略管理和执行,因为不管工作负载处在网络中的哪个位置,虚拟层的策略执行了。
其次,让我们看看数据中心多租户,当其应用于东西向流量的时候。设想一下用户试图在多租户云中增加多个工作负载或实例(类似Web服务器和数据库服务器这种)。用户可能想要将其特定的工作负载及由其产生的东西流量与其他用户分隔开来。毫无疑问,在传统网络中手动配置这些类型的服务是一种操作负担。
在上百个交换机上配置端口和VLAN需要大量的工作。添加隔离的3层服务或额外的如负载均衡这样的网络功能又进一步将这种问题复杂化。因此,许多SDN解决方案为多租户提供更高级别的抽象,简化了所需连接的部署。更重要的是,这些SDN解决方案将网络视作整体,能够让所需的连接以一种集中化的方式部署或取消,而非在每台设备上。
总而言之,当我们强调东西流量和SDN的关系时,自然避不开经常出现的这两个例子,SDN具备真正的解决方案和适用性。
好文章,需要你的鼓励
CoreWeave发布AI对象存储服务,采用本地对象传输加速器(LOTA)技术,可在全球范围内高速传输对象数据,无出口费用或请求交易分层费用。该技术通过智能代理在每个GPU节点上加速数据传输,提供高达每GPU 7 GBps的吞吐量,可扩展至数十万个GPU。服务采用三层自动定价模式,为客户的AI工作负载降低超过75%的存储成本。
IDEA研究院等机构联合开发了ToG-3智能推理系统,通过多智能体协作和双重进化机制,让AI能像人类专家团队一样动态思考和学习。该系统在复杂推理任务上表现优异,能用较小模型达到卓越性能,为AI技术的普及应用开辟了新路径,在教育、医疗、商业决策等领域具有广阔应用前景。
谷歌DeepMind与核聚变初创公司CFS合作,运用先进AI模型帮助管理和改进即将发布的Sparc反应堆。DeepMind开发了名为Torax的专用软件来模拟等离子体,结合强化学习等AI技术寻找最佳核聚变控制方式。核聚变被视为清洁能源的圣杯,可提供几乎无限的零碳排放能源。谷歌已投资CFS并承诺购买其200兆瓦电力。
上海人工智能实验室提出SPARK框架,创新性地让AI模型在学习推理的同时学会自我评判,通过回收训练数据建立策略与奖励的协同进化机制。实验显示,该方法在数学推理、奖励评判和通用能力上分别提升9.7%、12.1%和1.5%,且训练成本仅为传统方法的一半,展现出强大的泛化能力和自我反思能力。