当你听音乐时,网站推荐的歌曲居然都是你的“心头好”;网上购物时,总是能从推荐中找到想买的东东;商场门口的广告,正是你感兴趣的项目;曾经很堵的道路,交通导航引导你的总是畅通快捷的道路……
您或许惊喜,生活变得智能变得便利;但是您更加惊奇,到底是什么,改变了您的生活呢?这正是大数据的力量~
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
说到“数据加工”,那么就一定要提提当前热门的大数据处理平台:Hadoop & Spark。
高效、高容错的分布式文件系统(Hadoop HDFS)、高可靠性、可伸缩的分布式存储系统(HBase)、基于内存的分布式计算框架(Spark),不断涌起的开源大数据技术,推进着大数据时代的演进,给各种企业带来价值。
【使用运维门槛高,大数据“联姻”云计算来解决】
大数据平台使用的hadoop&spark这些都是开源软件,开源软件获取非常方便,但是企业会发现大数据开源软件种类多,技术复杂,对人员的技能要求很高,大数据平台的使用和运维成难题。而通常的企业没有专门的大数据工程师,这就给企业实施大数据带来了很大的难度。
举例说,通常一个企业部署一个简单数据分析的大数据项目,如果自建平台,一般需要采购,安装,部署,运维全流程来,至少耗时几个月。而且需要有专门技能的工程师,这种高门槛让普通的企业很难享受到大数据技术的带来的实惠,所以为了降低使用门槛,华为将大数据服务化,以云服务的形式提供企业以前需要复杂的物理机维护、集群创建、管理、作业维护简化成几个简单的web页面操作和API调用,大幅降低客户使用大数据的门槛,实现大数据组件的自动化部署和运维,大幅降低大数据的使用门槛和运维成本。
【华为大数据平台,经过考验的平台,强于社区又奉献于社区】
华为在将大数据与云计算结合之前,长期给电信,金融等大企业提供大数据平台(Hadoop & Spark),因此华为大数据平台是经过电信和金融等大企业严苛考验的平台。Hadoop & Spark是开源软件,开源软件在稳定性和性能上都有一定的缺失,华为云服务上部署的Hadoop & Spark是经过数百个项目检验过的稳定可靠的版本。以Spark SQL为例,开源的Spark也支持SQL,但是兼容性和能力上都有欠缺。华为在开源的基础上增强Spark SQL能力,华为云服务的Spark SQL基本支持SQL 99,国际上通用的TPC-DS测试100%兼容。除了Spark SQL,华为还在小文件、性能、稳定性等很多关键领域里面进行了增强。华为大数据对社区的版本是完全、无缝兼容,我们对Hadoop & Spark的增强,都积极回馈社区,目前Hadoop 累计贡献者20+,贡献patch 1000+,spark 累计贡献者15人+,贡献patch 200+。
【企业客户降成本、升效率福音:华为企业云提供弹性大数据服务】
目前,华为企业云弹性大数据服务已经应用在金融、教育、能源、智能交通、舆情监控等多个行业领域:
在金融服务领域,基于Hadoop的分布式大数据平台,采用分布式算法完成数据分析,帮助金融机构更了解客户需求和识别客户的资信状况,通过对客户刷卡、存取款、电子银行转帐、存贷款记录等信息进行综合分析,使原来2~4周才能处理的贷款审核业务周期,具备缩短至小时级业务处理的能力,极大的提升业务处理的效率。
在舆情监控领域,弹性大数据服务平台在海量数据中快速发现价值,以大数据为支柱的智慧警务成为警务发展的潮流,通过大量的多类型数据(从人口统计数据到到各区域所治安状况、流动人口数据等等),创建犯罪高发地区热点图谱,同时还将相邻片区等各种因素加入到数据模型中,并根据历史犯罪记录和地点统计并不断修正所得出的预测数据。实现更高效的情报收集,更方便的数据共享,更精准的预防个体犯罪行为和反社会行为,提升了业务处理效率。
大数据的价值在很多行业已经充分体现:
通过对海量、各种类型数据的分析,帮助企业的商业决策更全面,在商业决策中让更多的数据来说话。
运用大数据,可以改善服务体验、服务水平,如互联网金融服务。
金融、电信、媒资、互联网搜索/电商、广告等数据密集型行业,通过大数据,可以发现或创新出的商业价值。
未来的企业,面对越来越强的竞争,华为企业云大数据服务,愿意和企业一起,利用大数据技术,提升产品竞争力,用户满意度,以及提高商业价值上努力。
华为大数据服务,希望在未来和企业一起让数据“慧”说话。
好文章,需要你的鼓励
临近年底,苹果公布了2024年App Store热门应用和游戏榜单,Temu再次成为美国下载量最多的免费应用。
云基础设施市场现在已经非常庞大,很难再有大的变化。但是,因为人们可以轻松地关闭服务器、存储和网络——就像开启它们那样,预测全球云基础设施开支可能非常困难。