“每个组织都有一个问题,数据的蔓延,以及流动性只是让情况变得更糟,”OwnCloud的企业战略集团高级分析师Terri麦克卢尔说。 “是从一个点让员工访问所有的数据,无论他们使用什么设备,以避免更多的冗余,仍然保持它在控制。”
云将让您的移动员工更加容易的工作,它可能成为存储区域网络(SAN),网络附加存储(NAS),和服务器相当的混合。最近,员工已经开始使用智能电话和Chromebook,而不是个人计算机工作。云将让您的移动员工更加容易的共享您的文件。
那么,我们需要一个很好的替代品来充分利用您现有的存储基础架构,同时提供云友好,带给自己动手设备(BYOD)的做法是新ownCloud7企业版。
由于ownCloud7企业版面世,其体系结构基于开源基础架构即服务(IaaS),可以访问,控制和管理整个企业的数据孤岛的文件。你和你的系 统管理员去选择哪个服务器,你就可以拥有你的私人ownCloud。有了它,你可以控制你的用户在整个现场存储设备和私有/混合云存储服务访问文件。例 如,您的IT管理员可以快速集成ownCloud与现有的Active Directory(AD)和/或轻量目录访问协议(LDAP)。
与此同时,用户可以轻松地从智能手机,平板电脑和PC访问您的数据存储,就好像这些是一个统一的存储设备。与此同时,随着ownCloud的服务器 到服务器共享功能,在一个ownCloud安装用户可以无缝地共享上的不同ownCloud的安装文件,用户无需使用共享链接。因此,你可以保留自己的私 人ownCloud的隐私和控制,同时获得使用公共云文件共享的灵活性和易用性。
OwnCloud这是否与新的通用文件访问。这提供了一个共同的文件访问层整个组织,数据是否驻留在内部服务器上的对象存储,在这样的 SharePoint或扎,其他ownClouds,甚至是外部云系统,如Dropbox的,谷歌,亚马逊和应用。在公共云的情况下,文件同步到桌面或移 动应用程序,使它们可脱机使用。
此外,这个最新版本中,用户现在可以访问和同步所有的SharePoint2007年,2010年,和 2013年的内容通过ownCloud。系统 管理员也可以单独根据需要,为用户提供随时随地添加SharePoint文档库,随时随地访问,同时尊重现有的访问控制列表(ACL)来控制文件。
Windows网络驱动器的集成也得到了提高。该公司声称,它比以往更容易“管理员安装Windows网络驱动器的用户,一组或整个 ownCloud实例。如果一个组织有一个或多个网络驱动器,这些都可以由管理员添加和应用到实例。然后,用户可以访问所有的网络驱动器在一个单一的文件 夹结构,所有的本地的ACL得到尊重。“
对象存储在OpenStack对象存储和亚马逊S3 - 现在可以用来作为主存储。管理员可以混合和匹配所有这些不同形式存储到最适合自己的用户的需求。
“组织已经花费数年时间构建复杂,异构的IT环境,以支持其业务流程,”马库斯·雷克斯,ownCloud在一份新闻稿中说,公司首席执行官。 “而现在,通过引入公共云和消费级的文件同步和共享应用程序,它只是变得更加复杂 - 一个真正的非结构化数据的混乱增加复杂性和成本,以及严重的安全性和私密性灾害的潜在OwnCloud优惠。 IT的能力给员工快捷方便地访问他们的文件 - 他们居住在哪里,不管 - 并提供了一个数据管理层,允许IT维护完整的基于策略的控制,并与他们现有的工具和流程整合“
好文章,需要你的鼓励
LibreOffice 25.8版本以"更智能、更快速、更可靠"为特色正式发布。新版本在多个方面实现性能优化,包括启动速度、文档滚动和文件打开速度的显著提升。该版本增强了对微软Office文档格式的兼容性,改进了连字符处理和字体兼容性,Calc表格组件新增十多个函数以更好支持Excel文件导入。值得注意的是,LibreOffice 25.8首次支持PDF 2.0格式导出,并具备PDF数字加密和签名功能。新版本提高了系统要求,不再支持Windows 7/8系列和32位系统。
谷歌DeepMind团队开发出ViNT视觉导航系统,让机器人像人类一样仅通过"看"就能在陌生环境中导航。该系统模仿ChatGPT的学习方式,通过分析600万个导航轨迹掌握通用导航能力,在未知环境中的成功率达87%。这一突破将推动物流配送、家庭服务、搜救等领域的机器人应用发展。
微软AI首席执行官苏莱曼发文称,研究AI福利和意识"既不成熟又危险",认为这会加剧人类对AI的不健康依赖。而Anthropic、OpenAI等公司正积极研究AI意识问题,招聘相关研究人员。业界对AI是否会产生主观体验及其权利问题分歧严重。前OpenAI员工认为可以同时关注多个问题,善待AI模型成本低且有益。随着AI系统改进,关于AI权利和意识的辩论预计将升温。
谷歌DeepMind推出AlphaFold3,革命性提升分子结构预测能力。该AI模型采用创新扩散网络架构,能够精确预测蛋白质与DNA、RNA、药物等分子的相互作用,准确率比传统方法提高50%以上。这一突破将显著加速新药开发,推动基础科学研究,并通过免费开放服务促进全球科研合作,标志着生命科学研究进入AI驱动的新时代。