思博伦通信宣布,推出Spirent Landslide™ EDGE 以及 Spirent Landslide ™ CORE两款测试解决方案,两者均让移动网络运营商能够实时进行部署和管理,从而最大化运营效率。
鉴于如今使用互联设备、程序和服务的用户数量呈爆发式增长,网络拥堵和过载已然成为导致移动网络中断问题的第二大罪魁祸首。而全新Landslide解决方案套件运用前瞻性方案,让运营商能通过自身网络来监视网络性能,并及时检测出信号衰弱,从而避免对用户体验产生影响。不仅如此,该系统还能够对配置更改和升级进行自动实时地验证,最终,运营商能够用更短的时间推广新服务、改进的网络性能来提供更好的用户服务,进而提高现有用户的忠诚度。
思博伦通信移动事业部总经理John Baker指出,“根据业内消息,全球范围的移动运营商每年要花费近150亿美元,来解决各种网络衰退和中断问题,其中就包括网络拥堵和过载。而通过使用Landslide CORE 和 EDGE套件,运营商能够极大地改善网络管理和数据层的实时监控。同时在QoE方面,这两组套件还能针对不同网络节点对用户服务的影响进行验证。”
Heavy Reading的首席分析师Patrick Donegan表示:“在直接成本方面,全球范围的运营商每年必须耗费几十亿美元来解决网络中断和衰退问题。而从间接成本角度分析,网络中断和衰退问题也是造成客户流失的一大重要因素。”
Senza Fili Consulting公司的董事长Monica Polini认为:“随着需求规模的不断扩张,运营商必须通过提高资源利用情况来不断拓展自身的能力,以适应业务增长的需要并不会增加成本。为了日后的成功运作,有远见的运营商应当寻求那些能够主动监控网络情况并提前检测出问题的解决方案。”
好文章,需要你的鼓励
这项研究提出了ORV(占用中心机器人视频生成)框架,利用4D语义占用作为中间表示来生成高质量的机器人操作视频。与传统方法相比,ORV能提供更精确的语义和几何指导,实现更高的时间一致性和控制精度。该框架还支持多视角视频生成(ORV-MV)和模拟到真实的转换(ORV-S2R),有效弥合了虚拟与现实之间的差距。实验结果表明,ORV在多个数据集上的表现始终优于现有方法,为机器人学习和模拟提供了强大工具。
这项研究由Writer公司团队开发的"反思、重试、奖励"机制,通过强化学习教导大型语言模型生成更有效的自我反思内容。当模型回答错误时,它会生成反思并二次尝试,若成功则奖励反思过程。实验表明,该方法在函数调用和数学方程解题上带来显著提升,最高分别改善18.1%和34.7%。令人惊讶的是,经训练的小模型甚至超越了同家族10倍大的模型,且几乎不存在灾难性遗忘问题。这种自我改进技术为资源受限环境下的AI应用开辟了新方向。
FuseLIP是一项突破性研究,提出了通过早期融合离散标记实现多模态嵌入的新方法。与传统CLIP模型使用独立编码器不同,FuseLIP采用单一编码器同时处理图像和文本标记,实现了更自然的模态交互。研究证明,这种早期融合方法在多种多模态任务上表现优异,特别是在需要理解图像结构而非仅语义内容的任务上。研究还开发了创新的数据集和评估任务,为多模态嵌入研究提供了宝贵资源。
ByteDance与浙江大学合作开发的MERIT是首个专为多语言多条件语义检索设计的基准数据集,包含320,000条跨5种语言的查询和135,000个产品。研究发现现有模型在处理多条件查询时过度关注全局语义而忽略特定条件元素,为此提出CORAL框架,通过嵌入重建和对比学习相结合的方式,使检索性能提升45.9%。这项研究不仅识别了现有方法的关键局限性,还为多条件交错语义检索领域的未来研究奠定了基础。