对于企业而言,SD-WAN具有很大的潜能,特别是随着开发人员开始使用各种定制服务和功能。软件定义WAN(SD-WAN)的发展给企业提供了各种各样的好处,包括从降低资金成本支出到改进功能等。
但首先让我们看看软件定义网络(SDN)与传统网络的区别。
在传统网络中,每个设备都配备专有控制平面,它可理解并根据需要运行必要的交换和路由协议。而对于SDN,控制平面从物理设备中分离出来;流量通过中央软件控制器路由。这种方法让网络更加动态;并可根据需要添加和减少资源。而且这种方法不必使用专有软件来运行物理组件。SD-WAN开发人员利用开源和开放标准软件作为其基础,可添加他们需要的功能,而不需要了解运行网络的硬件。为此,WAN会被虚拟化(正如现在的服务器),因为主机不会意识到网络资源是非物理而是模拟的。
开源软件联合推动软件定义WAN
开源软件和开放标准将推动现在的WAN转型。在软件定义环境中,我们不再需要购买专用硬件来执行特定的任务。WAN管理和服务将主要通过白盒设备;连接将根据需要来增加。优化和其他服务质量属性将满足应用本身的具体需要。
以开源软件作为基础,WAN软件开发人员可以协同工作,创建新的服务,允许企业快速配置WAN链接来满足其特定业务需求。
现在我们还没有发展到那一步,软件定义WAN底层基础刚刚处于起步阶段,但在未来几年内,我们希望看到企业开始享受下一代网络带来的好处。
好文章,需要你的鼓励
Akamai的分布式边缘架构从设计之初就以韧性为核心,全球平台通过跨区域负载均衡和智能路由技术,确保即使某些节点出现故障,流量也能无缝切换至可用节点。
卡内基梅隆大学联合Adobe开发出革命性的NP-Edit技术,首次实现无需训练数据对的AI图像编辑。该技术通过视觉语言模型的语言反馈指导和分布匹配蒸馏的质量保障,让AI仅用4步就能完成传统50步的编辑任务,在保持高质量的同时大幅提升处理速度,为图像编辑技术的普及应用开辟了全新道路。
Turner & Townsend发布的2025年数据中心建设成本指数报告显示,AI工作负载激增正推动高密度液冷数据中心需求。四分之三的受访者已在从事AI数据中心项目,47%预计AI数据中心将在两年内占据一半以上工作负载。预计到2027年,AI优化设施可能占全球数据中心市场28%。53%受访者认为液冷技术将主导未来高密度项目。电力可用性成为开发商面临的首要约束,48%的受访者认为电网连接延迟是主要障碍。
复旦大学团队突破AI人脸生成"复制粘贴"痛点,开发WithAnyone模型解决传统AI要么完全复制参考图像、要么身份差异过大的问题。通过MultiID-2M大规模数据集和创新训练策略,实现保持身份一致性的同时允许自然变化,为AI图像生成技术树立新标杆。