目前越来越多的人开始在移动设备上使用搜索功能,这种趋势渐渐开始超越传统的桌面搜索。而移动设备真的能取代传统PC吗?当然,你可以从不同角度来看这个问题,但随着传统PC销量的下降,我们似乎看到了这一苗头,但可惜目前还没到这个时机,但是谷歌还是给我们带来了一些信息,“更多的搜索发生在10几个国家中,包括美国和日本的移动设备上。”
从这些信息来看,移动设备的确超越了台式机,至少在谷歌搜索上是这样,这就难怪谷歌开始通过网站的“移动友好度”来进行站点评分,这也是多年来谷歌最大的一次算法改变。由此看出,广告和搜索业务的确都在与时俱进的发展。
另一作证是,根据谷歌近期的研究,发现移动应用程序,而不是Web浏览器,目前平均占每个用户每月30小时。所以,企业的目光都盯向了移动应用这块,也就是APP。
但是,简单地释放为您服务或网站的应用程序是不够的。谷歌建议你让用户轻松找到您的应用程序通过搜索引擎和宣传他们。最重要的是,谷歌建议您定期刷新您的应用程序,在其中加入广告,并添加深层链接,这些广告。
并非所有人都同意与谷歌的分析。 ComScore公司在其2015年3月的数字设备和流量调查发现,“虽然大多数生长在数字媒体消费,在过去四年中已经出现在智能手机上(高达394%) 和平板电脑(高达1721%的),这些移动平台是不是吃进入花在桌面聚集的时间,这仍然增长37%超过这个时间。“
不过,comScore还发现,移动搜索查询,包括智能手机和平板电脑,来到了总搜索量只有29%。在另一方面,该研究公司还发现,在2014年Facebook的移动业务收入超过了台式机的收入。
另取来自comScore的数据,这或许可以解释谷歌新的重点放在手机,从发布Search Engine Land的是,“谷歌搜索收入可能有本质见顶的PC上。谷歌这样既有权采取份额从竞争对手在PC上还是推动移动搜索收入保持增长。“
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。