企业在采用网络软件技术方面动作要比电信服务提供商慢。
事实上,根据Doyle Research的数据,企业应用只占不到40%的SDN和网络虚拟化总开支。
企业应用的障碍包括缺少清晰的业务驱动力、已知的风险和不知道应该相信哪一种技术策略。
企业网络软件不仅仅只有SDN
网络软件包括SDN和虚拟网络元素,如有特殊作用并且与底层网络硬件分开购买的4-7层设备。
事实上,网络软件包括各种各样的用例,如数据中心网络连接、路由、交换、WAN优化、应用交付控制(ADC)、网络监控与管理和网络安全。目前,几乎每一个4-7层网络设备供应商都推出了虚拟设备产品。
企业网络软件的痛点源于成熟度不够
许多大型企业目前都在评估网络软件的部署,但是他们也害怕(Fear)、不确定(Uncertainty)和怀疑(Doubt)(FUD)技术的成熟度。实际上,他们希望保证自己能选择到“正确的”架构,然后与可信的合作伙伴来升级自己的网络。
云服务提供商通常都在全新部署时采用软件方法;与之不同的是,企业必须考虑新技术对于他们遗留网络及目前仍在使用的大量应用程序的影响。
消除企业网络软件应用的障碍
下面是一些消除现有企业网络软件应用障碍的方法:
• 证明业务案例:提供现有公开的网络软件实现例子,清晰说明其业务优点和挑战。
• 遗留网络集成:行业需要开放地处理遗留网络环境中管理新SDN/虚拟网络元素的挑战。
• 提供用例:在快速销售网络软件中,供应商通常会忽略一些具体、重要的用例,它们将反映该软件确实有清晰的优点,并且相对容易实现。
• 支持多供应商互操作性:所有大型企业都会使用多个网络与安全提供商的产品。网络软件实现必须要证明能够与主流提供商设备实现互操作,如思科、VMware、F5等。
理解多种网络软件选择
或许使用软件网络的最大障碍是不知道如何选择种类繁多的技术方案。首先,需要考虑下面这些关键技术:
• VMware NSX:NSX是一个数据中心网络软件堆叠技术。它最初的应用需求来自于安全性(微分段)。VMware说它已经有250多个NSX付费客户。
• 思科APIC:应用策略基础架构控制器 (APIC)支持数据中心网络的自动分配和管理。在较早的版本中,思科说它已经有200多个APIC客户。
• OpenDayLight:ODL是一个网络可编程性的开放控制平台,它以软件方式实现各种网络服务。ODL可以实现为开源软件,或者从许多的网络提供商获取。
• 网络软件独立软件供应商(ISV):IT经理可以从几十个网络软件提供商选择技术方案,他们提供了各种控制功能,其中包括白盒交换机、路由、WAN优化、ADC和网络监控等。宣布已经有客户的ISV包括Adara、Big Switch、Brocade、Cumulus、Nuage、Pluribus、Plumgrid、Sideband和Viptela。
企业网络软件案例研究
虽然现在还是企业网络软件的应用初期,但是仍然有许多大型组织已经成功实现了网络软件,包括全新部署和遗留环境。例如,金融服务公司Lucera已经在其数据中心和WAN中实现了SDN。
在2014年10月举行的ONUG(开放网络用户小组)会议中,工程公司MWH Global说明了它是如何将其MPLS网络更换为虚拟WAN。同时,还有许多其他的大型企业在会上介绍了自己正在进行及计划的数据中心与LAN的网络软件实现。
OpenStack驱动网络软件
OpenStack部署带动的重大发展势头在最近已经成为热点新闻。但是,OpenStack中相对较弱的网络功能将会成为未来几年内网络软件部署的重大推动力。实现OpenStack的IT经理很可能会向商业网络软件提供商寻求他们所需要的虚拟网络功能。
好文章,需要你的鼓励
这项研究由浙江大学、复旦大学等机构联合完成,提出了ReVisual-R1模型,通过创新的三阶段训练方法显著提升了多模态大语言模型的推理能力。研究发现优化的纯文本冷启动训练、解决强化学习中的梯度停滞问题、以及分阶段训练策略是关键因素。ReVisual-R1在各类推理基准测试中超越了现有开源模型,甚至在某些任务上超过了商业模型,为多模态推理研究开辟了新途径。
这项研究提出了一种名为"批评式微调"的创新方法,证明仅使用一个问题的批评数据就能显著提升大语言模型的推理能力。研究团队对Qwen和Llama系列模型进行实验,发现这种方法在数学和逻辑推理任务上都取得了显著提升,平均提高15-16个百分点,而且只需要强化学习方法1/20的计算资源。这种简单高效的方法为释放预训练模型的潜在推理能力提供了新途径。
新加坡国立大学研究团队开发了名为IEAP的图像编辑框架,它通过将复杂编辑指令分解为简单原子操作序列解决了当前AI图像编辑的核心难题。研究发现当前模型在处理不改变图像布局的简单编辑时表现出色,但在需要改变图像结构时效果差。IEAP框架定义了五种基本操作,并利用思维链推理技术智能分解用户指令,实验证明其性能显著超越现有方法,尤其在处理复杂多步骤编辑时。
Character AI的研究者开发出TalkingMachines系统,通过自回归扩散模型实现实时音频驱动视频生成。研究将预训练视频模型转变为能进行FaceTime风格对话的虚拟形象系统。核心创新包括:将18B参数的图像到视频DiT模型改造为音频驱动系统、通过蒸馏实现无错误累积的无限长视频生成、优化工程设计降低延迟。系统可让多种风格的虚拟角色与人进行自然对话,嘴型与语音同步,为实时数字人交互技术开辟了新可能。