企业工作负载越来越多地迁移到云中,IT人员是时候使用下一代网络所需要的云监控工具了。
几乎所有企业现在都使用某种形式的云服务。其中,有超过97%的企业在使用软件即服务(SaaS);有超过42%的企业在使用平台即服务(PaaS);最后有超过53%的企业在使用基础架构即服务(IaaS)。
但是,这些应用的宽度与深度并不匹配。通常情况下,只有不到四分之一的企业应用程序通过SaaS交付。在使用IaaS和PaaS的企业中,半数企业都只是将不到3%的工作负载部署到云中。
但是,部署场景处于变革前沿。随着满意度的不断增加,加上集成与安全技术的不断成熟,运行在云中的工作比例在快速攀升。到2020年,我们预计有50%的企业工作负载运行在外部云。
引起这种变化的动因是DevOps技术和文化在越来越多的组织中传播,以及真正的私有云出现。这种技术都非常依赖于资源的自动化和编制:工作负载在各个位置上不断地扩大、缩小和来回移动。所有这些都在编制工具的命令行中自动完成,它们可以从一个应用程序容器上分配任何东西,小到一个微服务,大到一个复杂应用架构(包括容器、虚拟机)、服务器(外加存储、网络和安全)都可以。
相关技术搭配
在这个转变过程之中,IT必须保证要搭配相应的应用程序网络管理工具。
这意味着在整个过程中IT都必须有能力去监控可用性和性能,包括内部应用程序的开始开发阶段到各种服务产品的整个进化过程。成功意味着要能够全面监控服务组件及其底层平台元素,以及从服务器到用户设备的端到端监控。
用户不会关注于中间层的所有元素,但是IT需要尽可能多地理解这些服务是如何交付给用户使用的,因为它们需要知道各个组成部分中可能出现的问题。
必备监控目标清单
总体上,IT需要监控下面的层次:
• 资源层,包括:
计算主机,包括虚拟机(VM)、容器和工作负载直接使用的资源;
存储,包括块、文件或对象;
网络,包括物理和虚拟网络。
• 虚拟机层
• 容器层
• 应用/微服务层
• 用户可见的服务层
而且,IT必须同时跟踪外部和内部托管的工作负载。
在这个方面,如果网络管理工具目前基于网络设备,那么IT需要像在内部环境的一样在外部云环境部署这些工具的虚拟版本。由于管理基于运行在宿主、应用服务器或容器上的代理端,所以IT需要为准备监控的特定组件分配或配置一个代理端——在同一个自动化工作流、声明式定义或黄金镜像中。
类似地,IT只需要通过单独一个玻璃窗就能够查看到构成混合基础架构的所有层次和资源池的服务视图。理想情况下,这个仪表板会嵌入到云管理平台中,IT可以用它快速响应事件。单独一个工具和一个技术是无法解决所有问题的。云管理器是将现代分布式计算环境所需要的所有管理和监控工具聚集在一起的逻辑位置。
好文章,需要你的鼓励
IBM Spyre加速器将于本月晚些时候正式推出,为z17大型机、LinuxONE 5和Power11系统等企业级硬件的AI能力提供显著提升。该加速器基于定制芯片的PCIe卡,配备32个独立加速器核心,专为处理AI工作负载需求而设计。系统最多可配置48张Spyre卡,支持多模型AI处理,包括生成式AI和大语言模型,主要应用于金融交易欺诈检测等关键业务场景。
微软研究院提出潜在分区网络(LZN),首次实现生成建模、表示学习和分类任务的真正统一。该框架通过共享高斯潜在空间和创新的潜在对齐机制,让原本独立的AI任务协同工作。实验显示LZN不仅能增强现有模型性能,还能独立完成各类任务,多任务联合训练效果更是超越单独训练。这项研究为构建下一代通用AI系统提供了新的架构思路。
意大利初创公司Ganiga开发了AI驱动的智能垃圾分拣机器人Hoooly,能自动识别并分类垃圾和可回收物。该公司产品包括机器人垃圾桶、智能盖子和废物追踪软件,旨在解决全球塑料回收率不足10%的问题。2024年公司收入50万美元,已向谷歌和多个机场销售超120台设备,计划融资300万美元并拓展美国市场。
上海AI实验室开发的VLAC模型让机器人首次具备真实世界自主学习能力。该系统如同给机器人配备智能导师,能实时评估动作效果并从中学习。在四个操作任务测试中,机器人成功率从30%提升至90%,仅需200次练习。技术结合视觉、语言理解和动作生成,支持跨场景适应和人机协作,为家庭服务、医疗护理等领域应用奠定基础。