企业工作负载越来越多地迁移到云中,IT人员是时候使用下一代网络所需要的云监控工具了。
几乎所有企业现在都使用某种形式的云服务。其中,有超过97%的企业在使用软件即服务(SaaS);有超过42%的企业在使用平台即服务(PaaS);最后有超过53%的企业在使用基础架构即服务(IaaS)。
但是,这些应用的宽度与深度并不匹配。通常情况下,只有不到四分之一的企业应用程序通过SaaS交付。在使用IaaS和PaaS的企业中,半数企业都只是将不到3%的工作负载部署到云中。
但是,部署场景处于变革前沿。随着满意度的不断增加,加上集成与安全技术的不断成熟,运行在云中的工作比例在快速攀升。到2020年,我们预计有50%的企业工作负载运行在外部云。
引起这种变化的动因是DevOps技术和文化在越来越多的组织中传播,以及真正的私有云出现。这种技术都非常依赖于资源的自动化和编制:工作负载在各个位置上不断地扩大、缩小和来回移动。所有这些都在编制工具的命令行中自动完成,它们可以从一个应用程序容器上分配任何东西,小到一个微服务,大到一个复杂应用架构(包括容器、虚拟机)、服务器(外加存储、网络和安全)都可以。
相关技术搭配
在这个转变过程之中,IT必须保证要搭配相应的应用程序网络管理工具。
这意味着在整个过程中IT都必须有能力去监控可用性和性能,包括内部应用程序的开始开发阶段到各种服务产品的整个进化过程。成功意味着要能够全面监控服务组件及其底层平台元素,以及从服务器到用户设备的端到端监控。
用户不会关注于中间层的所有元素,但是IT需要尽可能多地理解这些服务是如何交付给用户使用的,因为它们需要知道各个组成部分中可能出现的问题。
必备监控目标清单
总体上,IT需要监控下面的层次:
• 资源层,包括:
计算主机,包括虚拟机(VM)、容器和工作负载直接使用的资源;
存储,包括块、文件或对象;
网络,包括物理和虚拟网络。
• 虚拟机层
• 容器层
• 应用/微服务层
• 用户可见的服务层
而且,IT必须同时跟踪外部和内部托管的工作负载。
在这个方面,如果网络管理工具目前基于网络设备,那么IT需要像在内部环境的一样在外部云环境部署这些工具的虚拟版本。由于管理基于运行在宿主、应用服务器或容器上的代理端,所以IT需要为准备监控的特定组件分配或配置一个代理端——在同一个自动化工作流、声明式定义或黄金镜像中。
类似地,IT只需要通过单独一个玻璃窗就能够查看到构成混合基础架构的所有层次和资源池的服务视图。理想情况下,这个仪表板会嵌入到云管理平台中,IT可以用它快速响应事件。单独一个工具和一个技术是无法解决所有问题的。云管理器是将现代分布式计算环境所需要的所有管理和监控工具聚集在一起的逻辑位置。
好文章,需要你的鼓励
本文评测了六款控制台平铺终端复用器工具。GNU Screen作为老牌工具功能强大但操作复杂,Tmux更现代化但学习曲线陡峭,Byobu为前两者提供友好界面,Zellij用Rust编写界面简洁易用,DVTM追求极简主义,Twin提供类似TurboVision的文本界面环境。每款工具都有各自特点和适用场景。
韩国汉阳大学联合高通AI研究院开发出InfiniPot-V框架,解决了移动设备处理长视频时的内存限制问题。该技术通过时间冗余消除和语义重要性保留两种策略,将存储需求压缩至原来的12%,同时保持高准确性,让手机和AR眼镜也能实时理解超长视频内容。
网络安全公司Snyk宣布收购瑞士人工智能安全研究公司Invariant Labs,收购金额未公开。Invariant Labs从苏黎世联邦理工学院分拆成立,专注于帮助开发者构建安全可靠的AI代理工具和框架。该公司提供Explorer运行时观察仪表板、Gateway轻量级代理、Guardrails策略引擎等产品,并在工具中毒和模型上下文协议漏洞等新兴AI威胁防护方面处于领先地位。此次收购将推进Snyk保护下一代AI原生应用的使命。
纽约大学研究团队通过INT-ACT测试套件全面评估了当前先进的视觉-语言-动作机器人模型,发现了一个普遍存在的"意图-行动差距"问题:机器人能够正确理解任务和识别物体,但在实际动作执行时频频失败。研究还揭示了端到端训练会损害原有语言理解能力,以及多模态挑战下的推理脆弱性,为未来机器人技术发展提供了重要指导。