毋庸置疑,在数据中心设计出来之前,必须考虑数据中心的建设规模。数据中心建设规模的大小,与当前的投资成本以及未来的运维成本息息相关。


确定数据中心的建设规模需要考虑如下几个问题:
1.目前业务需要和未来一定时期内的扩展需求,根据大多数企业的运营经验,至少要保证数据中心在未来五年内有可扩展能力。
2.充分考虑企业的经济规模,即项目投入与预计产出比是否处于最优状态、资源和资金的使用是否高效。可采用先期基本建设一次建成,后期按需分步实施的策略;
3.确定拟建规模的可行性,重点考虑资源状况是否满足拟建规模的要求,主要包括场地空间、能源供应、项目资金状况等方面;
4.充分考虑企业所在行业的现状、发展趋势和行业特点;
5.对于改造项目,在保持项目可用性和可靠性的前提下,应充分考虑原有设备和设施的有效利用。
在充分考虑了以上几点因素后,首先对未来数据中心机架的数量进行适当预估,初步确定机房的面积需求。同时,根据未来数据中心的供电密度和冗余等级,对其需要提供的配电设施和空调区域面积作出合理的预估,最终可以确定数据中心的建设规模。
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。