密切关注应用程序的性能在混合云的情况下变得更严格。APM(应用性能监控)工具可以帮助您完成这个任务。
然而混合云与公共云的好处都是显而易见的,都引入IT运作团队的独特挑战。最有力的挑战之一是应用程序性能监控(APM)。
在大多数情况下,组织机构已经设法去获悉他们本地应用程序的性能。使用从SAP解决方案经理提供的解决方案到来自包括Riverbed技术公司、 Dynatrace公司以及其他公司的基础架构监控平台,企业对于传统的应用性能都有一个脉冲。然而,随着企业迁移应用程序到云端或是在内部基础设施架构 和云设施基础架构之间分割资源,监控变成了更大的挑战。
应用程序的性能监控需要超过能够检查系统日志或是从基于代理的产品中精读陈旧数据的能力。运营团队需要和开发人员联手去识别动态调整系统资源的机会。最好 的选择是提供一个积极的途径。在企业的虚拟基础设施空间,比如,VMTurbo使用性能数据来调整系统设置和虚拟机(VM)的布局。在考虑混合应用程序的 需求时,运营团队能够从相似的方式中获益。
混合应用程序的分布式特性意味着分布式的管理域。举例来说,一个混合应用程序在本地部署用于交易的计算系统以及在云端部署用于数据分析的虚拟机。在这种情 况下,正如传统应用程序一样,APM工具必须占用存储、计算以及网络的性能。但是因为虚拟机可以在任何地方,企业运营团队不能访问底层的基础架构设施。这 种限制意味着基于硬件的监控并不可选。
备注:追踪混合性能最成功的方式实际上是在应用程序中集成监控。
追踪混合性能最成功的方式实际上是在应用程序中集成监控。Netflix的混乱猴子性能监控计划,聚焦在应用层,就是一个很好的例子。运行在Amazon 网络服务环境中的服务,自动分配资源以满足需求。如果负载增加,资源就被释放;相反,如果需求减少,资源就会自旋降低。
基础设施即服务并非唯一的考虑。组织机构开始利用软件及服务(SaaS)以及平台即服务(PaaS)。简单的在一台虚拟机上安装一个管理代理并不能满足大部分组织机构的需求,因为无论是在Paas还是SaaS,都没有一个操作系统会暴露给客户。
很显然,并非每一个组织机构都有资源或是需求去利用类似混乱猴子这样的开源平台去满足它的性能监控需求。类似来自SignalFX的公司的新的唯一的 SaaS选择可以填补这一差距。上个月启动时,位于加州圣马特奥市,介绍了结合性能追踪和分析的混合基础设施监控软件。结果是APM工具允许客户关联性能 和事件数据,这就能够让用户积极地调整他们的混合基础设施或是必要的时候采取措施去协商新的服务水平协议。
同时,传统的性能供应商,例如Splunk,也开始调整他们的混合云产品。尽管Splunk不提供实时的性能监控和分析,软件也能够提供强大的时间关联。
好文章,需要你的鼓励
本文评测了六款控制台平铺终端复用器工具。GNU Screen作为老牌工具功能强大但操作复杂,Tmux更现代化但学习曲线陡峭,Byobu为前两者提供友好界面,Zellij用Rust编写界面简洁易用,DVTM追求极简主义,Twin提供类似TurboVision的文本界面环境。每款工具都有各自特点和适用场景。
韩国汉阳大学联合高通AI研究院开发出InfiniPot-V框架,解决了移动设备处理长视频时的内存限制问题。该技术通过时间冗余消除和语义重要性保留两种策略,将存储需求压缩至原来的12%,同时保持高准确性,让手机和AR眼镜也能实时理解超长视频内容。
网络安全公司Snyk宣布收购瑞士人工智能安全研究公司Invariant Labs,收购金额未公开。Invariant Labs从苏黎世联邦理工学院分拆成立,专注于帮助开发者构建安全可靠的AI代理工具和框架。该公司提供Explorer运行时观察仪表板、Gateway轻量级代理、Guardrails策略引擎等产品,并在工具中毒和模型上下文协议漏洞等新兴AI威胁防护方面处于领先地位。此次收购将推进Snyk保护下一代AI原生应用的使命。
纽约大学研究团队通过INT-ACT测试套件全面评估了当前先进的视觉-语言-动作机器人模型,发现了一个普遍存在的"意图-行动差距"问题:机器人能够正确理解任务和识别物体,但在实际动作执行时频频失败。研究还揭示了端到端训练会损害原有语言理解能力,以及多模态挑战下的推理脆弱性,为未来机器人技术发展提供了重要指导。