密切关注应用程序的性能在混合云的情况下变得更严格。APM(应用性能监控)工具可以帮助您完成这个任务。
然而混合云与公共云的好处都是显而易见的,都引入IT运作团队的独特挑战。最有力的挑战之一是应用程序性能监控(APM)。
在大多数情况下,组织机构已经设法去获悉他们本地应用程序的性能。使用从SAP解决方案经理提供的解决方案到来自包括Riverbed技术公司、 Dynatrace公司以及其他公司的基础架构监控平台,企业对于传统的应用性能都有一个脉冲。然而,随着企业迁移应用程序到云端或是在内部基础设施架构 和云设施基础架构之间分割资源,监控变成了更大的挑战。
应用程序的性能监控需要超过能够检查系统日志或是从基于代理的产品中精读陈旧数据的能力。运营团队需要和开发人员联手去识别动态调整系统资源的机会。最好 的选择是提供一个积极的途径。在企业的虚拟基础设施空间,比如,VMTurbo使用性能数据来调整系统设置和虚拟机(VM)的布局。在考虑混合应用程序的 需求时,运营团队能够从相似的方式中获益。
混合应用程序的分布式特性意味着分布式的管理域。举例来说,一个混合应用程序在本地部署用于交易的计算系统以及在云端部署用于数据分析的虚拟机。在这种情 况下,正如传统应用程序一样,APM工具必须占用存储、计算以及网络的性能。但是因为虚拟机可以在任何地方,企业运营团队不能访问底层的基础架构设施。这 种限制意味着基于硬件的监控并不可选。
备注:追踪混合性能最成功的方式实际上是在应用程序中集成监控。
追踪混合性能最成功的方式实际上是在应用程序中集成监控。Netflix的混乱猴子性能监控计划,聚焦在应用层,就是一个很好的例子。运行在Amazon 网络服务环境中的服务,自动分配资源以满足需求。如果负载增加,资源就被释放;相反,如果需求减少,资源就会自旋降低。
基础设施即服务并非唯一的考虑。组织机构开始利用软件及服务(SaaS)以及平台即服务(PaaS)。简单的在一台虚拟机上安装一个管理代理并不能满足大部分组织机构的需求,因为无论是在Paas还是SaaS,都没有一个操作系统会暴露给客户。
很显然,并非每一个组织机构都有资源或是需求去利用类似混乱猴子这样的开源平台去满足它的性能监控需求。类似来自SignalFX的公司的新的唯一的 SaaS选择可以填补这一差距。上个月启动时,位于加州圣马特奥市,介绍了结合性能追踪和分析的混合基础设施监控软件。结果是APM工具允许客户关联性能 和事件数据,这就能够让用户积极地调整他们的混合基础设施或是必要的时候采取措施去协商新的服务水平协议。
同时,传统的性能供应商,例如Splunk,也开始调整他们的混合云产品。尽管Splunk不提供实时的性能监控和分析,软件也能够提供强大的时间关联。
好文章,需要你的鼓励
IBM Spyre加速器将于本月晚些时候正式推出,为z17大型机、LinuxONE 5和Power11系统等企业级硬件的AI能力提供显著提升。该加速器基于定制芯片的PCIe卡,配备32个独立加速器核心,专为处理AI工作负载需求而设计。系统最多可配置48张Spyre卡,支持多模型AI处理,包括生成式AI和大语言模型,主要应用于金融交易欺诈检测等关键业务场景。
加拿大女王大学研究团队首次对开源AI生态系统进行端到端许可证合规审计,发现35.5%的AI模型在集成到应用时存在许可证违规。他们开发的LicenseRec系统能自动检测冲突并修复86.4%的违规问题,揭示了AI供应链中系统性的"许可证漂移"现象及其法律风险。
意大利初创公司Ganiga开发了AI驱动的智能垃圾分拣机器人Hoooly,能自动识别并分类垃圾和可回收物。该公司产品包括机器人垃圾桶、智能盖子和废物追踪软件,旨在解决全球塑料回收率不足10%的问题。2024年公司收入50万美元,已向谷歌和多个机场销售超120台设备,计划融资300万美元并拓展美国市场。
这项由剑桥大学、清华大学和伊利诺伊大学合作的研究首次将扩散大语言模型引入语音识别领域,开发出Whisper-LLaDA系统。该系统具备双向理解能力,能够同时考虑语音的前后文信息,在LibriSpeech数据集上实现了12.3%的错误率相对改进,同时在大多数配置下提供了更快的推理速度,为语音识别技术开辟了新的发展方向。