2015开放网络峰会(ONS)如期举行,Google依然是大会最璀璨的明星。6月17日,Google网络研究院及技术主管Amin Vahdat给我们带来了Google的分享。在他的keynote上给我们回顾了这家搜索引擎巨头在数据中心网络上前进的步伐。

Vahhdat介绍了Google对SDN的理解,从最简单的SDN到SDN的各种场景应用,也只有在技术上深耕的大牛公司才能将技术讲的如此简单 明了。随后,他讨论了在往届ONS上Google分享的SDN案例,包括B4、Google的SD-WAN、网络虚拟化服务Andromeda。这一次, 他给我们分享了Google数据中心的内部网络。
几年前,传统网络架构已经不能满足Google数据中心的规模上的需求。“我们买不到一个数据中心系统能够满足我们的分布式系统的需 求。”Vahdat说道。“这些传统网络仅仅是不能满足我们数据中心带宽的需求。”对Google而言,可买的路由器的最大空间限制了我们网络的规模。可 扩展性是公司与生俱来的特质,这样的公司基因为后续Google内部发展SDN铺平了道路。下图(本图来自参与本次会议阿里巴巴的kitty拍摄的会议记 录照片)是Google分享的其从2006至今网络的创新路径,包括2006年的Google Global Cache,2008的Watchtower、Freedome,2010的Onix、BwE、B4,2012的Jupiter、2014的 Andromeda、Quic、gRPC。

Google将目光朝向了Clos拓扑、商业硅晶片,还有集中式控制(这是SDN的主要特性),这些都是其数据中心网络模型的灵感来源。按照这样的 节奏,Google在校园网聚合和广域网之间发现了新的思维连接点。就这样在近10年,Google创建的B4和Andromeda在数据中心网络中扮演 了非常重要的角色。
数据中心的流量在2007年到2014年之间增长了近50倍,Google任然考虑到可伸缩性至关重要。不过其讨论的其他规模的统计数据太大了,以 至于ONS主席Guru Parulkar都难以置信其规模之大。例如Jupiter,Google第五代的数据中心架构,每个集群每秒能产生1.3G比特的数据。
“计算已经在一个十字路口。在Google,我们对网络特别感兴趣,因为它将改变计算的含义。”Vahdat补充道。他提到了摩尔定律,“每平方英 寸集成电路的晶体管数量在逐年翻倍,不过这个现象将很快结束。我们必须改变我们对计算的认知,以为我们不能一直为了跟上带宽的需要而让网络重复撤掉再替换 的循环。”
“使用SDN,Google能够满足这种日益增长的需求。其数据中心网络的基础设施可以支持规模化、性能、可用性,开发人员现在也有机会在Google云平台上进行修补。”Vahdat总结道。
SDNLAB语:Google对于基础设施高度重视,这也是美国世界顶级互联网公司的代表做法,无论是Amazon还是Facebook,他们都在做自己的硬件+软件的解决方案,既然没人能做那就我们自己做,这不仅仅是自信,更是一种对技术创新的执着。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。