2015开放网络峰会(ONS)如期举行,Google依然是大会最璀璨的明星。6月17日,Google网络研究院及技术主管Amin Vahdat给我们带来了Google的分享。在他的keynote上给我们回顾了这家搜索引擎巨头在数据中心网络上前进的步伐。
Vahhdat介绍了Google对SDN的理解,从最简单的SDN到SDN的各种场景应用,也只有在技术上深耕的大牛公司才能将技术讲的如此简单 明了。随后,他讨论了在往届ONS上Google分享的SDN案例,包括B4、Google的SD-WAN、网络虚拟化服务Andromeda。这一次, 他给我们分享了Google数据中心的内部网络。
几年前,传统网络架构已经不能满足Google数据中心的规模上的需求。“我们买不到一个数据中心系统能够满足我们的分布式系统的需 求。”Vahdat说道。“这些传统网络仅仅是不能满足我们数据中心带宽的需求。”对Google而言,可买的路由器的最大空间限制了我们网络的规模。可 扩展性是公司与生俱来的特质,这样的公司基因为后续Google内部发展SDN铺平了道路。下图(本图来自参与本次会议阿里巴巴的kitty拍摄的会议记 录照片)是Google分享的其从2006至今网络的创新路径,包括2006年的Google Global Cache,2008的Watchtower、Freedome,2010的Onix、BwE、B4,2012的Jupiter、2014的 Andromeda、Quic、gRPC。
Google将目光朝向了Clos拓扑、商业硅晶片,还有集中式控制(这是SDN的主要特性),这些都是其数据中心网络模型的灵感来源。按照这样的 节奏,Google在校园网聚合和广域网之间发现了新的思维连接点。就这样在近10年,Google创建的B4和Andromeda在数据中心网络中扮演 了非常重要的角色。
数据中心的流量在2007年到2014年之间增长了近50倍,Google任然考虑到可伸缩性至关重要。不过其讨论的其他规模的统计数据太大了,以 至于ONS主席Guru Parulkar都难以置信其规模之大。例如Jupiter,Google第五代的数据中心架构,每个集群每秒能产生1.3G比特的数据。
“计算已经在一个十字路口。在Google,我们对网络特别感兴趣,因为它将改变计算的含义。”Vahdat补充道。他提到了摩尔定律,“每平方英 寸集成电路的晶体管数量在逐年翻倍,不过这个现象将很快结束。我们必须改变我们对计算的认知,以为我们不能一直为了跟上带宽的需要而让网络重复撤掉再替换 的循环。”
“使用SDN,Google能够满足这种日益增长的需求。其数据中心网络的基础设施可以支持规模化、性能、可用性,开发人员现在也有机会在Google云平台上进行修补。”Vahdat总结道。
SDNLAB语:Google对于基础设施高度重视,这也是美国世界顶级互联网公司的代表做法,无论是Amazon还是Facebook,他们都在做自己的硬件+软件的解决方案,既然没人能做那就我们自己做,这不仅仅是自信,更是一种对技术创新的执着。
好文章,需要你的鼓励
DeepResearchGym是一个创新的开源评估框架,专为深度研究系统设计,旨在解决当前依赖商业搜索API带来的透明度和可重复性挑战。该系统由卡内基梅隆大学研究团队开发,结合了基于ClueWeb22和FineWeb大型网络语料库的可重复搜索API与严格的评估协议。实验表明,使用DeepResearchGym的系统性能与使用商业API相当,且在评估指标间保持一致性。人类评估进一步证实了自动评估协议与人类偏好的一致性,验证了该框架评估深度研究系统的有效性。
这项研究介绍了FinTagging,首个面向大型语言模型的全面财务信息提取与结构化基准测试。不同于传统方法,它将XBRL标记分解为数值识别和概念链接两个子任务,能同时处理文本和表格数据。在零样本测试中,DeepSeek-V3和GPT-4o表现最佳,但在细粒度概念对齐方面仍面临挑战,揭示了当前大语言模型在自动化XBRL标记领域的局限性,为金融AI发展提供了新方向。
这项研究介绍了SweEval,一个新型基准测试,用于评估大型语言模型在企业环境中处理脏话的能力。研究团队从Oracle AI等多家机构的专家创建了一个包含八种语言的测试集,模拟不同语调和上下文的真实场景。实验结果显示,LLM在英语中较少使用脏话,但在印地语等低资源语言中更易受影响。研究还发现较大模型通常表现更好,且多语言模型如Llama系列在处理不当提示方面优于其他模型。这项工作对企业采用AI技术时的安全考量提供了重要参考。
这项研究提出了"VeriFree"——一种不需要验证器的方法,可以增强大型语言模型(LLM)的通用推理能力。传统方法如DeepSeek-R1-Zero需要验证答案正确性,限制了其在数学和编程以外领域的应用。VeriFree巧妙地计算正确答案在模型生成的推理过程后出现的概率,作为评估和训练信号。实验表明,这种方法不仅能匹配甚至超越基于验证器的方法,还大幅降低了计算资源需求,同时消除了"奖励黑客"问题。这一突破将有助于开发出在化学、医疗、法律等广泛领域具有更强推理能力的AI系统。