2015开放网络峰会(ONS)如期举行,Google依然是大会最璀璨的明星。6月17日,Google网络研究院及技术主管Amin Vahdat给我们带来了Google的分享。在他的keynote上给我们回顾了这家搜索引擎巨头在数据中心网络上前进的步伐。
Vahhdat介绍了Google对SDN的理解,从最简单的SDN到SDN的各种场景应用,也只有在技术上深耕的大牛公司才能将技术讲的如此简单 明了。随后,他讨论了在往届ONS上Google分享的SDN案例,包括B4、Google的SD-WAN、网络虚拟化服务Andromeda。这一次, 他给我们分享了Google数据中心的内部网络。
几年前,传统网络架构已经不能满足Google数据中心的规模上的需求。“我们买不到一个数据中心系统能够满足我们的分布式系统的需 求。”Vahdat说道。“这些传统网络仅仅是不能满足我们数据中心带宽的需求。”对Google而言,可买的路由器的最大空间限制了我们网络的规模。可 扩展性是公司与生俱来的特质,这样的公司基因为后续Google内部发展SDN铺平了道路。下图(本图来自参与本次会议阿里巴巴的kitty拍摄的会议记 录照片)是Google分享的其从2006至今网络的创新路径,包括2006年的Google Global Cache,2008的Watchtower、Freedome,2010的Onix、BwE、B4,2012的Jupiter、2014的 Andromeda、Quic、gRPC。
Google将目光朝向了Clos拓扑、商业硅晶片,还有集中式控制(这是SDN的主要特性),这些都是其数据中心网络模型的灵感来源。按照这样的 节奏,Google在校园网聚合和广域网之间发现了新的思维连接点。就这样在近10年,Google创建的B4和Andromeda在数据中心网络中扮演 了非常重要的角色。
数据中心的流量在2007年到2014年之间增长了近50倍,Google任然考虑到可伸缩性至关重要。不过其讨论的其他规模的统计数据太大了,以 至于ONS主席Guru Parulkar都难以置信其规模之大。例如Jupiter,Google第五代的数据中心架构,每个集群每秒能产生1.3G比特的数据。
“计算已经在一个十字路口。在Google,我们对网络特别感兴趣,因为它将改变计算的含义。”Vahdat补充道。他提到了摩尔定律,“每平方英 寸集成电路的晶体管数量在逐年翻倍,不过这个现象将很快结束。我们必须改变我们对计算的认知,以为我们不能一直为了跟上带宽的需要而让网络重复撤掉再替换 的循环。”
“使用SDN,Google能够满足这种日益增长的需求。其数据中心网络的基础设施可以支持规模化、性能、可用性,开发人员现在也有机会在Google云平台上进行修补。”Vahdat总结道。
SDNLAB语:Google对于基础设施高度重视,这也是美国世界顶级互联网公司的代表做法,无论是Amazon还是Facebook,他们都在做自己的硬件+软件的解决方案,既然没人能做那就我们自己做,这不仅仅是自信,更是一种对技术创新的执着。
好文章,需要你的鼓励
检索增强生成(RAG)正成为AI领域的关键技术,通过结合外部信息检索与大语言模型的生成能力,解决传统模型仅依赖训练数据的局限性。RAG允许模型实时访问外部数据库或文档,提供更准确、更新的信息。该技术可应用于企业文档查询、个人化AI助手等场景,通过向模型提供特定领域知识来获得精准结果。微软专家指出,RAG有助于结合知识与推理、提高模型使用效率,并支持多模态应用。
加州大学伯克利分校研究团队开发出革命性的R2R2R系统,仅需智能手机拍摄和一段演示视频,就能自动生成大量机器人训练数据。该系统绕过了传统昂贵的远程操作和复杂物理仿真,通过3D重建和智能轨迹生成技术,让机器人训练效率提升27倍,成本大幅降低,有望让高质量机器人技能变得像安装手机应用一样普及。
AI数据平台iMerit认为企业级AI工具集成的下一步不是更多数据,而是更好的数据。该公司正式推出学者计划,旨在建立专家团队来微调生成式AI模型。与Scale AI的高吞吐量方法不同,iMerit专注于专家主导的高质量数据标注,需要深度人工判断和领域专业监督。公司目前与超过4000名学者合作,客户包括三家大型生成式AI公司、八家顶级自动驾驶公司等。
腾讯优图实验室提出AnoGen方法,仅用3张异常图片就能训练出高精度工业检测AI。该方法通过扩散模型学习异常特征并生成大量逼真样本,在MVTec数据集上将检测精度提升5.8%,为解决工业异常检测中样本稀缺问题提供了突破性方案。