随着智能终端和多种业务的蓬勃发展,未来无线网络将呈现密集部署、多样业务、异构网络并存的多样化形态。在复杂网络环境下,高弹性和可扩展网络技术的研究受到越来越多的关注与重视,网络虚拟化技术就是其中之一。
早期针对网络虚拟化技术的研究主要集中在核心网侧,如虚拟局域网(VLAN)、软件定义网络(SDN)、网络功能虚拟化(NFV)等。虚拟化技术在 核心网络侧已经得到了广泛应用,而随着未来5G无线网络业务需求的激增,无线接入网络侧虚拟化技术也逐渐被提上日程。无线网络相比有线网络更加复杂,需要 考虑信道的不确定性、干扰、信令开销以及高速移动性等问题,另外还需要考虑回传网络的容量和时延限制。
C-RAN是中国移动在2009年提出的无线接入网形态。C-RAN通过无线射频单元(RRU)拉远的方式,将基带处理资源进行集中,形成一个基带 资源池并对其进行统一管理和动态分配,在提升资源利用率、降低能耗的同时,还可以通过协作化技术来有效降低干扰,提升网络性能。目前,C-RAN集中化部 署技术已经成熟,并在国内多个城市现网中进行了规模部署。
针对未来5G网络的虚拟化技术,可以突破现有网络架构和协议标准等束缚,伴随着高频段频谱资源的大量开发利用,以及未来硬件和软件系统处理能力的不 断增强,无线网络侧虚拟化技术可以与已有的SDN和NFV技术结合,通过对网络资源(包括物理设备资源和频谱资源)的抽象和统一,将复杂多样的网络管控功 能从硬件中解耦出来,抽取到上层做统一协调和管理,构建一个更加灵活有效,同时低成本、高效率的全虚拟网络。
无线网络虚拟化是目前5G研究的热点和重点,通过资源虚拟化和控制虚拟化,可以将传统的静态网络转化成灵活高效的动态网络,与SDN、NFV等技术结合,更可以减少投资,保证低成本和高可靠性。
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。