除了让冰箱知道什么时候牛奶喝完了,物联网(IoT)还有更深层次的东西。在这个系列文章中,我们将分析三个IoT网络,以及用它们可以实现的企业服务。
在上世纪80年代,卡内基梅隆大学有一组计算机科学学生将他们公寓的一台可乐售卖机连接上互联网。这台机器可以报告库存量,以及新放置的饮料是否已经冰冻。
这就是所谓物联网(IoT)的开端,传奇仍在继续。
许多围绕IoT技术的公众宣传都集中在消费类应用上,例如大家所熟知的当牛奶喝完后就会自动下订单购买的电冰箱。这些IoT技术主要是一些具有收发数据连网功能的物件。但是,IoT网络也逐渐成为各种组织的强力支持,其中包括市政、校区和商业环境等。在11月,Gartner预测到2015年会有49亿连网“物体”,其数量比2014年增长30%。Gartner指出,这个数字很可能到2020年达到250亿。
然而,随着企业寻找到更多的IoT应用,他们需要考虑大师设备涌入对环境的影响,如它们所产生流量对有线和无线网络的影响。支持IoT网络的基础架构也需要负责处理密度、管理和安全性等需求的变化。
我们将探寻现在正在运行IoT网络的三个组织——拉斯维加斯Sands集团、圣何塞与田纳西啤酒零售商Del Papa,探讨他们部署的网络,了解背后支撑这些网络的技术。
好文章,需要你的鼓励
本文评测了六款控制台平铺终端复用器工具。GNU Screen作为老牌工具功能强大但操作复杂,Tmux更现代化但学习曲线陡峭,Byobu为前两者提供友好界面,Zellij用Rust编写界面简洁易用,DVTM追求极简主义,Twin提供类似TurboVision的文本界面环境。每款工具都有各自特点和适用场景。
韩国汉阳大学联合高通AI研究院开发出InfiniPot-V框架,解决了移动设备处理长视频时的内存限制问题。该技术通过时间冗余消除和语义重要性保留两种策略,将存储需求压缩至原来的12%,同时保持高准确性,让手机和AR眼镜也能实时理解超长视频内容。
网络安全公司Snyk宣布收购瑞士人工智能安全研究公司Invariant Labs,收购金额未公开。Invariant Labs从苏黎世联邦理工学院分拆成立,专注于帮助开发者构建安全可靠的AI代理工具和框架。该公司提供Explorer运行时观察仪表板、Gateway轻量级代理、Guardrails策略引擎等产品,并在工具中毒和模型上下文协议漏洞等新兴AI威胁防护方面处于领先地位。此次收购将推进Snyk保护下一代AI原生应用的使命。
纽约大学研究团队通过INT-ACT测试套件全面评估了当前先进的视觉-语言-动作机器人模型,发现了一个普遍存在的"意图-行动差距"问题:机器人能够正确理解任务和识别物体,但在实际动作执行时频频失败。研究还揭示了端到端训练会损害原有语言理解能力,以及多模态挑战下的推理脆弱性,为未来机器人技术发展提供了重要指导。