除了让冰箱知道什么时候牛奶喝完了,物联网(IoT)还有更深层次的东西。在这个系列文章中,我们将分析三个IoT网络,以及用它们可以实现的企业服务。
在上世纪80年代,卡内基梅隆大学有一组计算机科学学生将他们公寓的一台可乐售卖机连接上互联网。这台机器可以报告库存量,以及新放置的饮料是否已经冰冻。
这就是所谓物联网(IoT)的开端,传奇仍在继续。
许多围绕IoT技术的公众宣传都集中在消费类应用上,例如大家所熟知的当牛奶喝完后就会自动下订单购买的电冰箱。这些IoT技术主要是一些具有收发数据连网功能的物件。但是,IoT网络也逐渐成为各种组织的强力支持,其中包括市政、校区和商业环境等。在11月,Gartner预测到2015年会有49亿连网“物体”,其数量比2014年增长30%。Gartner指出,这个数字很可能到2020年达到250亿。
然而,随着企业寻找到更多的IoT应用,他们需要考虑大师设备涌入对环境的影响,如它们所产生流量对有线和无线网络的影响。支持IoT网络的基础架构也需要负责处理密度、管理和安全性等需求的变化。
我们将探寻现在正在运行IoT网络的三个组织——拉斯维加斯Sands集团、圣何塞与田纳西啤酒零售商Del Papa,探讨他们部署的网络,了解背后支撑这些网络的技术。
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。