近日,南京网锐(原xNet)推出“锐”品牌,技术理念转向更具前瞻性的“IT架构转型”,结合近年来在SDN交换机和开放式网络领域的积累,网锐公司将SDN/NFV技术的开放性和灵活性优势充分发挥了出来。在启用“锐”品牌的同时,“NetrimX”作为全新的英文品牌名,一并闪亮登场!
回顾网锐的发展之路,艰辛与挑战如影随形,作为国内最早从事SDN技术研究的创业公司,网锐在成立之初,一直充当着SDN的布道师和破冰者角色。彼时,xNet(extensible Network)是网锐践行“开放网络”的标签,通过力推交换机软硬件解耦理念、白盒模式、交换机系统定制化开发,得到了大量ODM客户和互联网公司的认同。如今,网锐的眼光已经不仅仅局限与“L2~L4”的交换机层面,而是瞄准了更高处:网络与IT的融合协作,将软件定义的理念提升到应用交付,帮助用户构筑以软件为中心(software-centric)的IT基础设施。“锐”品牌令旗挥动,ADS交换机、flexSDN交换机、pureIP软件等一大波新产品拍马杀到。
网锐公司在业界首创了应用定义(ADS)交换机,利用交换机实现转发层平面的负载均衡,集群, 集群链, 优化网络层次结构,缩减ADC(应用交付控制器)等专用设备,精简IT网络,提升业务效率和可靠性。
【ADS交换机典型组网】
在ADS交换机构筑的新数据中心里面,不再需要专门的负载均衡控制器,由ADS自身处理转发平面的负载均衡,整个集群的吞吐量可以与ADS交换机的交换容量相当,彻底改变消除传统ADC的性能瓶颈;ADS连接的应用服务器可以全部工作在active模式,提高服务器利用率;系统采用单VIP,不需要DNS轮询;
flexSDN交换机包括X系列和E系列,前者用于数据中心,存储,HPC等网络的接入(ToR)和汇聚(EoR)部署,后者用于园区网,企业网等环境的接入和汇聚。网锐提供业界适用性最广的软件定义网络(SDN)和开放网络解决方案,基于开放式可编程Linux网络操作系统的NITOS,可以直接支持IT自动化运维工具(如Ansible, Puppet等)客户端。
【NITOS与Ansible联动进行监控】
NITOS还提供了Open API,支持用户对flexSDN交换机的集成,管理和控制。
【flexSDN典型应用】
flexSDN除了支持标准OpenFlow协议、集中式控制器部署模式外,还可以支持混合式控制器部署模式、自制控制器集中式部署模式以及点对点部署模式,给使用者更加灵活的选择。
pureIP系列软件是网锐公司推出的增强网络业务解决方案,分为SLB、FW、IPS多个功能版本,可以集成在物理服务器或者虚拟机中,与ADS交换机协作,满足云计算中心复杂的IT业务交付需求。
【ADS+PureIP在云数据中心的应用】
ADS交换机构筑应用交付骨干,集成在vm中的pureIP策应联动,互联网企业用户可以部署一个高可用、高性能, 可扩展的虚拟SLB集群服务链,提供NAT, Proxy, SSL, Caching, Compression, WAF 等功能,应对复杂的应用交付场景,而服务器集群既可以是IT应用服务(OA、邮件、web、aaa),也可以是NFV服务(防火墙、IPS、WAF、VPN),既满足IT应用需求,也可以实现IT支撑体系的Scale out。
“锐”是独到而敏锐的战略眼光,是锐意进取的凌厉气势,也是锐气逼人的创新产品。基础网络与上层业务的割裂是系统管理员的心病,当我们看到网锐的“netrimX”时,一切似乎有了答案,“trim”本来是个去除空格的函数,所以,netrimX就是要去除网络和所有应用之间的“空格”,让我们一起来期待!
好文章,需要你的鼓励
新加坡国立大学研究团队开发了名为IEAP的图像编辑框架,它通过将复杂编辑指令分解为简单原子操作序列解决了当前AI图像编辑的核心难题。研究发现当前模型在处理不改变图像布局的简单编辑时表现出色,但在需要改变图像结构时效果差。IEAP框架定义了五种基本操作,并利用思维链推理技术智能分解用户指令,实验证明其性能显著超越现有方法,尤其在处理复杂多步骤编辑时。
Character AI的研究者开发出TalkingMachines系统,通过自回归扩散模型实现实时音频驱动视频生成。研究将预训练视频模型转变为能进行FaceTime风格对话的虚拟形象系统。核心创新包括:将18B参数的图像到视频DiT模型改造为音频驱动系统、通过蒸馏实现无错误累积的无限长视频生成、优化工程设计降低延迟。系统可让多种风格的虚拟角色与人进行自然对话,嘴型与语音同步,为实时数字人交互技术开辟了新可能。
这项由中国人民大学高瓴人工智能学院研究团队发表的研究解决了大语言模型评判中的自我偏好问题。研究提出了DBG分数,通过比较模型给自身回答的分数与黄金判断的差异来测量偏好度,有效分离了回答质量与自我偏好偏差。实验发现,预训练和后训练模型都存在自我偏好,但大模型比小模型偏好度更低;调整回答风格和使用相同数据训练不同模型可减轻偏好。研究还从注意力分析角度揭示了自我偏好的潜在机制,为提高AI评判客观性提供了重要指导。
这篇研究提出了DenseDPO,一种改进视频生成模型的新方法,通过三大创新解决了传统方法中的"静态偏好"问题:使用结构相似的视频对进行比较,采集细粒度的时序偏好标注,并利用现有视觉语言模型自动标注。实验表明,DenseDPO不仅保留了视频的动态性,还在视觉质量方面与传统方法相当,同时大大提高了数据效率。这项技术有望推动AI生成更加自然、动态的视频内容。