RightScale是一家企业级云管理公司,其最新的云调查显示在2015年中企业正越来越多地实施混合云策略,包括公共云和私有云。
同时,RightScale还发现,越来越多的企业工作负载目前部署在私有云,而公有云的使用也越来越广泛,并有望吸引新的工作负载,以更快的速度。
调查还发现,云已经从移动的“影子”IT转变为企业IT管理。如今,大多数云支出决策,率先把云服务的组织的CIO和行政套房。
“企业采用云计算的浪潮已经从阴影IT转向为首的中央IT团队的战略收养,说:”迈克尔·克兰德尔,RightScale的CEO,在一份声明中。 “随着企业IT变得更加开放,公共云和更舒适的云安全,现在是处于强势地位,为内部客户和驱动采用云计算着经纪人的云服务。在未来的一年组织希望把更多的工作负载向云与公共云的工作负载增长速度比私有云快。“
RightScale的在2015年1月进行的调查在这里面,RightScale的质疑跨越他们采用云计算的组织具有广泛代表性的部分专业技术人员。 930受访者的范围从技术高管管理人员和从业人员代表在许多行业不同规模的企业。
的云报告强调RightScale的2015年国家包括:
混合云是首选策略:接受调查的组织93%正在运行的应用程序或基础设施作为一种服务(IaaS)的实验。与此同时,企业的82%有一个混合云战略。这是从74%在2014年公共云所使用的多个组织,88%,而私有云,63%,运行更多的工作负载。企业这一说,只有13%的运行公共云超过1000个虚拟机(VM),而组织22%的私有云上运行超过1000的虚拟机。换言之,私有云用户倾向于使用其云彩更多。
还是大量的空间,软件即服务(SaaS):虽然企业的68%运行的SaaS应用程序,不到五分正在运行的应用程序组合在云中。与此同时,企业的55%报告说,他们现有的应用程序组合的显著部分已建成云友好的架构。总之,我们可以期望看到软件作为服务(SaaS)的继续增长。
DevOps的上升,泊坞窗大增:总体的DevOps采用已经上升到66%,而企业达到71%。最流行的DevOps方案,厨师和木偶,由28和24%的企业分别使用。至于集装箱,码头工人,在其第一年,已经使用的企业13%的公司计划部署的高达35%。
IT管理需要云服务“缰绳:企业62%的报告说,中央IT使得广大的云支出决策。 43%的人都提供了一个自助服务门户访问云服务,另有41%的策划或开发一个门户网站。
亚马逊网络服务(AWS)占主导地位的公共云,天青使得企业进军:AWS采用是57%,而Azure的IaaS的是第二个,占12%与6%的在2014年在企业,天青的自然家园,微软的云产品缩小了差距有19%采用比AWS与50%。谷歌的IaaS产品展示企业间的快速增长,从4%到2015年增加至2014年的9%。
私有云摊位2015:受访者在采用私有云技术的最小的变化,从2014年的VMware vSphere继续领导与企业的受访者有53%报告说,他们把它作为一个私有云。企业使用OpenStack的显示了2015年的最大增幅,3%的速度增长。微软的新的Azure包提供显示在其第一年强劲的使用,企业使用的11%。
RightScale最后的结论是,私有云用户往往运行更多的虚拟机。RightScale自己的结果表明,它是混合云的真正增长因素。有厂商开始把私有云引入到与公共云的混合云模型中。
此外,尽管目前的vSphere支配私有云架构,而OpenStack和基于Azure的方法有足够的成长空间。同时可以降低在公共云和vSphere的投资代价。
好文章,需要你的鼓励
IBM Spyre加速器将于本月晚些时候正式推出,为z17大型机、LinuxONE 5和Power11系统等企业级硬件的AI能力提供显著提升。该加速器基于定制芯片的PCIe卡,配备32个独立加速器核心,专为处理AI工作负载需求而设计。系统最多可配置48张Spyre卡,支持多模型AI处理,包括生成式AI和大语言模型,主要应用于金融交易欺诈检测等关键业务场景。
微软研究院提出潜在分区网络(LZN),首次实现生成建模、表示学习和分类任务的真正统一。该框架通过共享高斯潜在空间和创新的潜在对齐机制,让原本独立的AI任务协同工作。实验显示LZN不仅能增强现有模型性能,还能独立完成各类任务,多任务联合训练效果更是超越单独训练。这项研究为构建下一代通用AI系统提供了新的架构思路。
意大利初创公司Ganiga开发了AI驱动的智能垃圾分拣机器人Hoooly,能自动识别并分类垃圾和可回收物。该公司产品包括机器人垃圾桶、智能盖子和废物追踪软件,旨在解决全球塑料回收率不足10%的问题。2024年公司收入50万美元,已向谷歌和多个机场销售超120台设备,计划融资300万美元并拓展美国市场。
上海AI实验室开发的VLAC模型让机器人首次具备真实世界自主学习能力。该系统如同给机器人配备智能导师,能实时评估动作效果并从中学习。在四个操作任务测试中,机器人成功率从30%提升至90%,仅需200次练习。技术结合视觉、语言理解和动作生成,支持跨场景适应和人机协作,为家庭服务、医疗护理等领域应用奠定基础。