北京时间2月11日午间消息,美国宾夕法尼亚大学最近发布一项研究表明,智能手机的计步应用精度已经足够高,在精度上完全可以媲美可穿戴设备,甚至更优。研究报告中对多款App的计步功能进行了统计,误差在-6.7%到6.2%之间,而可穿戴设备的误差在-22.7%到-1.5%之间。
这项研究共统计了全美前十的智能手机运动应用和可穿戴设备,由14名志愿者完成了500步和1500步的测量,每人都进行了两次测试,最终得出以上的结论。就在前不久,JAMA学术期刊上还得出了可穿戴设备对使用者生活习惯和健康几乎无促进作用的结论。
最后该研究小组的负责人给出的建议是,考虑到有超过65%的成年人随身携带智能手机,而可穿戴设备的普及率不足2%。,手机可以作为通用的健康追踪设备使用。
好文章,需要你的鼓励
随着数字化时代的到来,网络安全威胁呈指数级增长。勒索软件、AI驱动的网络攻击和物联网设备漏洞成为主要威胁。企业需要建立全面的风险管理策略,包括风险评估、安全措施实施和持续监控。新兴技术如人工智能、区块链和量子计算为网络安全带来新机遇。组织应重视员工培训、供应链安全、数据治理和事件响应能力建设。
滑铁卢大学研究团队开发出ScholarCopilot,一个革命性的AI学术写作助手。该系统突破传统"先检索后生成"模式,实现写作过程中的动态文献检索和精确引用。基于50万篇arXiv论文训练,引用准确率达40.1%,大幅超越现有方法。在人类专家评估中,引用质量获100%好评,整体表现优于ChatGPT。这项创新为AI辅助学术写作开辟新道路。
AWS Amazon Bedrock负责人Atul Deo正致力于让人工智能软件变得更便宜和更智能。他在12月re:Invent大会前只有六个月时间来证明这一目标的可行性。Deo表示AI领域发展速度前所未有,模型每几周就会改进,但客户只有在经济效益合理时才会部署。为此,AWS推出了提示缓存、智能路由、批处理模式等功能来降低推理成本,同时开发能执行多步骤任务的自主代理软件,将AI应用从聊天机器人转向实际业务流程自动化。
哥伦比亚大学研究团队发布NodeRAG技术,通过异构图结构革新智能问答系统。该方法将文档信息分解为7种节点类型,采用双重搜索机制,在多个权威测试中准确率达89.5%,检索效率提升50%以上,为智能信息检索技术带来重大突破。