北京时间2月11日午间消息,美国宾夕法尼亚大学最近发布一项研究表明,智能手机的计步应用精度已经足够高,在精度上完全可以媲美可穿戴设备,甚至更优。研究报告中对多款App的计步功能进行了统计,误差在-6.7%到6.2%之间,而可穿戴设备的误差在-22.7%到-1.5%之间。
这项研究共统计了全美前十的智能手机运动应用和可穿戴设备,由14名志愿者完成了500步和1500步的测量,每人都进行了两次测试,最终得出以上的结论。就在前不久,JAMA学术期刊上还得出了可穿戴设备对使用者生活习惯和健康几乎无促进作用的结论。
最后该研究小组的负责人给出的建议是,考虑到有超过65%的成年人随身携带智能手机,而可穿戴设备的普及率不足2%。,手机可以作为通用的健康追踪设备使用。
好文章,需要你的鼓励
谷歌发布数据共享模型上下文协议服务器,使开发者和AI智能体能够通过自然语言访问真实世界统计数据。该服务整合了政府调查、行政数据和联合国等全球机构的公共数据集。新服务旨在解决AI系统训练中常见的数据噪声和幻觉问题,为AI提供可验证的结构化信息。谷歌还与ONE Campaign合作推出数据智能体工具,该开源服务器兼容任何大语言模型。
这项由谷歌DeepMind研究团队完成的开创性研究首次系统阐述了AI智能体经济的概念框架。研究提出"沙盒经济"模型,从起源性质和边界渗透性两个维度分析AI智能体经济形态,预测未来将出现自然涌现且高度透水的AI经济网络。研究详细探讨了科学加速、机器人协调、个人助手等应用场景,提出基于拍卖机制的公平资源分配方案和使命经济概念,并深入分析了技术基础设施需求、社区货币应用以及相关风险防范措施。
微软宣布从周三开始将Anthropic的AI模型集成到其Copilot助手中,此前该助手主要依赖OpenAI技术。企业用户可在OpenAI的深度推理模型和Anthropic的Claude Opus 4.1、Claude Sonnet 4之间选择,用于复杂研究和构建定制AI工具等任务。此举标志着微软与OpenAI这对曾经独家合作伙伴关系的进一步松动。
中国人民大学研究团队提出LoFT方法,通过参数高效微调基础模型解决长尾半监督学习中的数据不平衡问题。该方法利用预训练模型的良好校准特性改进伪标签质量,并扩展出LoFT-OW版本处理开放世界场景。实验显示,仅使用传统方法1%的数据量就能取得更优性能,为AI公平性和实用性提供了新的解决方案。