物联网(IoT)的概念是指大多数数据流量最终会是机器对机器(M2M)通信,并且通常具有遥测的性质。这种流量的特点是低带宽和突发性:即异步发生在随机的时间间隔。市场专家认为,这种流量是不可避免的,这将需要很多新功能,包括在企业领域和消费者领域。
物联网流量将通过消费类应用的方式进入企业网络。随着电子医疗保健和健身应用进入消费领域,人们会希望在工作中和在家里使用这些应用。因此,这种应用将越来越多地通过企业网络传输来自员工个人设备的状态遥测数据,并最终发送到远程服务提供商。这种流量的问题在于,企业不可能知道它是否是良性的个人应用,还是捕捉和传输企业敏感数据的木马程序。这两者有着类似的通信配置文件,也都是间歇性的;阻止它们会是问题。
当然,企业可以部署物联网技术来提供对一切的有效遥测,包括从实用工具和安全监控到过程控制和商业智能。尽管这种流量会受到更好的控制,仍将是不可预测的。因此,它将会在很大程度上被现有安全应用和协议所忽视。
这些物联网数据对现有企业安全构成重大危险吗?有人或许会说“是的”,但其实,良好的安全措施可能可以确保物联网不会对现有应用带来不可接受的风险。事实上,企业物联网遥测可以被定义在IPv 6网络覆盖中,从而完全避开了现在占据企业网络的Ipv 4主网络。
更大的问题是物联网数据本身的安全性。这从根本上是保护设备及其与其他设备或应用的通信时需要考虑的问题。这并不简单,关键是确保遥测设备的可识别性,以及仅使用可信任软件。现在很多供应商提供设备级软件管理工具,本文中我们不会详细列出这些工具,感兴趣的读者可以给笔者发邮件以获取更多信息。
从根本上来说,物联网和安全的关键是确保企业部署物联网时一定要让IT部门积极参与其中。在部署前确保安全是必要条件,这样可以避免日后很多安全问题。
底线是什么?不要太担心,但要做好准备。物联网可以帮助企业实现重要的新的业务功能,值得企业承担风险。IT可以在发现和减轻风险方面发挥关键作用。
好文章,需要你的鼓励
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。
数据分析平台公司Databricks完成10亿美元K轮融资,公司估值超过1000亿美元,累计融资总额超过200亿美元。公司第二季度收入运营率达到40亿美元,同比增长50%,AI产品收入运营率超过10亿美元。超过650家客户年消费超过100万美元,净收入留存率超过140%。资金将用于扩展Agent Bricks和Lakebase业务及全球扩张。
上海AI实验室发布OmniAlign-V研究,首次系统性解决多模态大语言模型人性化对话问题。该研究创建了包含20万高质量样本的训练数据集和MM-AlignBench评测基准,通过创新的数据生成和质量管控方法,让AI在保持技术能力的同时显著提升人性化交互水平,为AI价值观对齐提供了可行技术路径。