物联网(IoT)的概念是指大多数数据流量最终会是机器对机器(M2M)通信,并且通常具有遥测的性质。这种流量的特点是低带宽和突发性:即异步发生在随机的时间间隔。市场专家认为,这种流量是不可避免的,这将需要很多新功能,包括在企业领域和消费者领域。
物联网流量将通过消费类应用的方式进入企业网络。随着电子医疗保健和健身应用进入消费领域,人们会希望在工作中和在家里使用这些应用。因此,这种应用将越来越多地通过企业网络传输来自员工个人设备的状态遥测数据,并最终发送到远程服务提供商。这种流量的问题在于,企业不可能知道它是否是良性的个人应用,还是捕捉和传输企业敏感数据的木马程序。这两者有着类似的通信配置文件,也都是间歇性的;阻止它们会是问题。
当然,企业可以部署物联网技术来提供对一切的有效遥测,包括从实用工具和安全监控到过程控制和商业智能。尽管这种流量会受到更好的控制,仍将是不可预测的。因此,它将会在很大程度上被现有安全应用和协议所忽视。
这些物联网数据对现有企业安全构成重大危险吗?有人或许会说“是的”,但其实,良好的安全措施可能可以确保物联网不会对现有应用带来不可接受的风险。事实上,企业物联网遥测可以被定义在IPv 6网络覆盖中,从而完全避开了现在占据企业网络的Ipv 4主网络。
更大的问题是物联网数据本身的安全性。这从根本上是保护设备及其与其他设备或应用的通信时需要考虑的问题。这并不简单,关键是确保遥测设备的可识别性,以及仅使用可信任软件。现在很多供应商提供设备级软件管理工具,本文中我们不会详细列出这些工具,感兴趣的读者可以给笔者发邮件以获取更多信息。
从根本上来说,物联网和安全的关键是确保企业部署物联网时一定要让IT部门积极参与其中。在部署前确保安全是必要条件,这样可以避免日后很多安全问题。
底线是什么?不要太担心,但要做好准备。物联网可以帮助企业实现重要的新的业务功能,值得企业承担风险。IT可以在发现和减轻风险方面发挥关键作用。
好文章,需要你的鼓励
从浙江安吉的桌椅,到广东佛山的沙发床垫、河南洛阳的钢制家具,再到福建福州的竹藤制品,中国各大高度专业化的家具产业带,都在不约而同地探索各自的数字化出海路径。
哥伦比亚大学研究团队开发了MathBode动态诊断工具,通过让数学题参数按正弦波变化来测试AI的动态推理能力。研究发现传统静态测试掩盖了AI的重要缺陷:几乎所有模型都表现出低通滤波特征和相位滞后现象,即在处理快速变化时会出现失真和延迟。该方法覆盖五个数学家族的测试,为AI模型选择和部署提供了新的评估维度。
研究人员正探索AI能否预测昏迷患者的医疗意愿,帮助医生做出生死决策。华盛顿大学研究员Ahmad正推进首个AI代理人试点项目,通过分析患者医疗数据预测其偏好。虽然准确率可达三分之二,但专家担心AI无法捕捉患者价值观的复杂性和动态变化。医生强调AI只能作为辅助工具,不应替代人类代理人,因为生死决策依赖具体情境且充满伦理挑战。
这项研究首次发现AI推理模型存在"雪球效应"问题——推理过程中的小错误会逐步放大,导致AI要么给出危险回答,要么过度拒绝正常请求。研究团队提出AdvChain方法,通过训练AI学习"错误-纠正"过程来获得自我纠错能力。实验显示该方法显著提升了AI的安全性和实用性,用1000个样本达到了传统方法15000个样本的效果,为AI安全训练开辟了新方向。