Facebook位于衣阿华州阿尔图纳的数据中心的空中鸟瞰图
Facebook的数据中心每天要收到多达数十亿次的用户请求;随着这家公司不断添加成员,推出新的功能特性,请求数量在不断增加。这一切对Facebook来说基本上是好事,可是对Facebook的网络工作人员来说却是个挑战。比如说,五个月前还能满足要求的数据中心拓扑结构现在已不堪重负了。
所以除了构建大型数据中心(比如位于衣阿华州阿尔图纳的这个数据中心)外,Facebook的工程师们还在不断优化数据中心的网络设计。话虽如此,用调整和改动来形容工程师们提出并在阿尔图纳数据中心落实的的设想想法可能并不恰当,更像是他们重新编写了网络设计指南。
旧的Facebook网络
在阿尔图纳数据中心兴建之前,Facebook的工程师们将数据中心的服务器机架排列成集群,类似图A中所示的架构。在实际环境中,Facebook不是只有三个机架,而是会有数百个机架。另外该图还显示了每个机架的架顶式(TOR)交换机,架顶式交换机在服务器和上游聚合交换机之间充当中介。
图A:架顶式(TOR)――网络连接架构
这种架构很管用,但是却给Facebook的工程师们出了几道难题。Facebook的网络工程师Alexey Andreyev解释:“首先,集群的大小受到集群交换机端口密度的限制。想建造最庞大的集群,我们就需要最庞大的网络设备,而那种设备只有一批数量有限的厂商才有售。另外,一个设备中需要这么多的端口与提供带宽最高的基础设施这种愿望相悖。更为困难的是,如何在集群大小、机架带宽和集群外面的带宽之间保持长期的最佳平衡。”
Fabric:新的网络拓扑结构
工程师们将每天那些数十亿次请求视作一种激励,决定摈弃复杂的、很耗带宽的自上而下的网络层次体系,改而换成一种新的设计,名为Fabric。图B中的幻灯片描述了新的服务器机架集群,名为pod。单单一个pod包括48个机架和架顶式交换机,架顶式交换机相互连成四只fabric交换机。“每只架顶式交换目前有4条40G上行链路,为用10G连接的服务器机架提供了总共160G的带宽容量。”
图B
这种设计方法具有下列优点:
•易于部署拥有48个节点的pod
•可扩展性得到了简化,而且没有限制
•每个pod都一模一样,都使用同样的连接
下一步是连接所有fabric交换机――图C中的幻灯片描述了这项任务是如何完成的。Andreyev表示,这个比较简单(难以想象它曾经是什么样子)。
图C
Andreyev解释,Facebook的工程师们在增添主干交换机时恪守48个节点这一原则。“为了实施覆盖整个大楼的连接,我们建立了主干交换机组成的四个独立‘平面’,每个平面里面最多可以扩展到48个独立设备。每个pod的每只fabric交换机都连接到本地平面里面的每只主干交换机。”
Andreyev接下来提到的数字大得惊人。“pod和平面共同组成了一个模块化网络拓扑结构,它能够容纳数十万台用10G连接的服务器,可扩展到数千万亿位的等分带宽,为我们的数据中心大楼提供非超额订购的机架到机架性能。”
网络运营
从架顶式交换机到网络的边缘,Fabric网络设计统一使用“第3层”技术,支持IPv4和IPv6,并且使用等成本多路径(ECMP)路由。Andreyev补充说:“为了防止偶尔出现的‘长流’(elephant traffic)大量占用带宽,导致端到端路径性能下降,我们让网络具有多种速度――所有交换机之间使用40G链路,同时通过架顶式交换机上的10G端口来连接服务器。我们还有服务器端机制,以便万一出现问题,可以绕过故障处。”
物理布局
Andreyev写道,图D中所示的新大楼布局与Facebook之前的设计区别不是很大。一个区别是,将Fabric新的主干交换机和边缘交换机放置在数据大厅X和数据大厅Y之间的第一层,并让通向外界的网络连接(最小入口点,即MPOE)跨越主干交换机和边缘交换机时代。
图D
克服挑战
Facebook的工程师似乎已克服了面临的挑战。硬件的局限性不再是个问题。不但减少了不同部件的数量,还降低了复杂性。Andreyev表示,技术团队奉行了“KISS(力求简单)”原则。他在文章的结尾处补充道:“我们新的fabric不是这种方法的一个例外。尽管这种拓扑结构规模庞大、样子复杂,但它其实是个高度模块化的系统,有许多重复部件。它很容易自动化和部署,而且运营起来比数量更少的一批定制集群还要来得简单。”
好文章,需要你的鼓励
科技专家Sungjoo Yoon在TED演讲中提出"偏好原理",认为了解用户喜好信息越多,就能创造更强大的技术。他将市场变化比作"地壳运动",从1969年命令行界面到80年代GUI,再到90年代网络界面,技术发展都遵循这一规律。自然语言处理能建立信任,而AI智能体时代的到来意味着非人类参与者将在人类主导的世界中发挥作用。
德国图宾根大学研究团队发现现代AI视觉模型具备强大的图像排序能力,能够理解年龄、美观程度等连续属性并进行准确排序。研究测试了7种AI模型在9个数据集上的表现,发现CLIP模型表现最佳,且仅需极少样本就能学会排序。这一突破为照片管理、电商展示、社交媒体等领域提供了新的技术方案。
微软推出了Copilot Vision AI新功能,该技术能够扫描和分析用户屏幕上的所有内容。这项AI视觉技术可以实时理解用户正在查看的信息,包括文本、图像和应用程序界面,为用户提供更加智能化的交互体验和个性化建议。此功能的推出标志着AI助手向更深层次的用户体验集成迈进。
KAUST团队开发UnMix-NeRF技术,首次实现3D场景重建与材料识别的同步。该系统利用光谱成像技术,能够识别物体的材料特性,不仅重建逼真3D场景,还可自动分离不同材料区域。技术在多个数据集上表现优异,为机器人、增强现实、工业检测等领域带来新突破。