数据中心迁移是项复杂工程,可能很难向为迁移活动拨款的企业高管解释清楚,需要了解并管理相关的业务运营风险。下面我们分析一下与管理数据中心有关的几个难题和风险。
服务可用性
数据中心的主要目的就是,托管运行为业务提供服务的应用程序。无论你何时考虑从一个数据中心迁移到另一个数据中心,必须首先考虑底层服务的可用性。这些服务包括:活动目录之类的基础设施应用程序和SAP之类的面向客户的应用程序。
当服务从一个数据中心转移到另一个数据中心时,你必须制定一项策略,特定的服务何时迁移和应用程序对彼此的依赖关系都必须考虑进来。确保服务可用性的一个常见做法就是,建立迁移组,然后把互相依赖的应用程序分到同一组。
至于支持大多数企业应用程序的服务,比如活动目录和DNS,一个常见做法就是,跨数据中心扩展这些核心服务。服务依然在两边的数据中心,直到迁移完成。
硬件迁移
迁移物理服务器通常有两种策略:一种名为“平移”(lift and shift),另一种名为数据复制。在平移策略中,硬件放到活动卡车上,然后安装到新的数据中心。系统在搬到新址之前已备份好,不过这个策略会带来一些风险。
最大的风险之一是物理服务器可能在搬运过程中遭到损坏;搬运过程中的损坏会导致备份毫无用处。另一个挑战就是两个数据中心相隔太远,因而这个方法不现实,无法保证服务在可以接受的时间段内可用。
第二种策略是通过一条租用线路来进行数据迁移。租用线路带来了两种sub-swing硬件方案。一种方案是执行物理机到物理机(P2P)迁移。P2P迁移需要购置同类硬件,以便原有数据中心的应用程序和硬件可以迁移过去,同时确保停机时间最短。
另一种硬件迁移方案是物理机到虚拟机(P2V)转换。P2V需要通过租用线路,将物理机转换成虚拟机。P2V旨在实现两个目标:第一个目标是,将工作负载从一个数据中心迁移到另一个数据中心,同时确保硬件成本最低。第二个目标是,通过转移到虚拟平台,实现数据中心转型。P2V迁移是大受欢迎的方案,因为许多工程师已经习惯于执行这种转换,这是之前数据中心项目的一部分。
数据迁移
将应用程序数据从一处迁移到另一处可能是数据中心迁移工程的最复杂的环节之一。一种简单的方案就是执行基于磁带或硬盘的备份,并执行恢复;不过,类似平移迁移,备份和恢复在及时恢复服务方面提供的能力很有限。另外,备份和恢复并不是最适合数据迁移的理想方法――它更适合数据恢复方案有限的灾难恢复这种场景。
为大多数数据迁移选择的主要方法是配置一条租用线路。如果两个数据中心之间有了一条专用连接,迁移团队就能充分利用基于硬件或软件的同步机制,执行数据迁移。除了能够迁移数据外,这个方法还可以用来执行P2P迁移、P2V迁移和虚拟机到虚拟机(V2V)迁移。
许多企业决定在两个数据中心之间拥有多条连接。连接至少需要两条线路:一路连接支持平常的最终用户和数据中心到数据中心的流量,以便支持活动目录等应用程序和应用程序到应用程序的流量;第二路、通常速度更快的连接用来执行数据同步。双路连接可以防止两种全然不同的流量干扰或影响对方。
好文章,需要你的鼓励
OpenAI发布ChatGPT新功能Pulse,可在用户睡眠期间生成个性化报告,提供5-10条简报帮助用户快速了解当日重要信息。该功能旨在让用户像查看社交媒体一样优先使用ChatGPT。Pulse首先向每月200美元的Pro订阅用户开放,未来计划扩展至所有用户。功能支持连接Gmail、日历等应用,可解析邮件、生成日程安排。报告以卡片形式展示,包含AI生成的图像和文本,涵盖新闻摘要、个性化建议等内容。
这项由谷歌DeepMind研究团队完成的开创性研究首次系统阐述了AI智能体经济的概念框架。研究提出"沙盒经济"模型,从起源性质和边界渗透性两个维度分析AI智能体经济形态,预测未来将出现自然涌现且高度透水的AI经济网络。研究详细探讨了科学加速、机器人协调、个人助手等应用场景,提出基于拍卖机制的公平资源分配方案和使命经济概念,并深入分析了技术基础设施需求、社区货币应用以及相关风险防范措施。
AI平台公司Clarifai发布新推理引擎,声称能让AI模型运行速度提升一倍,成本降低40%。该系统采用多种优化技术,从CUDA内核到高级推测解码,能在相同硬件上获得更强推理性能。第三方测试显示其在吞吐量和延迟方面创下行业最佳记录。该产品专门针对推理过程优化,特别适用于需要多步骤响应的智能体和推理模型。
中国人民大学研究团队提出LoFT方法,通过参数高效微调基础模型解决长尾半监督学习中的数据不平衡问题。该方法利用预训练模型的良好校准特性改进伪标签质量,并扩展出LoFT-OW版本处理开放世界场景。实验显示,仅使用传统方法1%的数据量就能取得更优性能,为AI公平性和实用性提供了新的解决方案。