Nemertes Research公司副总裁兼服务部总监Irwin Lazar讨论了关于移动办公的趋势:越来越多的移动设备对无线网络提出了更高的需求。他阐述了设备管理、内容管理、网络性能方面企业面临的挑战,并提供了克服困难的解决策略。
Lazar立足于Nemertes公司每年进行大规模调查的信息,探讨了企业如何评估新兴技术对业务的影响,企业如何制定实施新技术和服务的战略,以及企业如何衡量这些项目的成功。当涉及到移动性,Lazar说业界正面临IT支出、设备带宽、使用量和应用程序方面一个整体的增加,而且目前看不到尽头。现在管理移动性办公最成功的组织是那些每个员工拥有设备数量最多的企业。这并不让人意外,员工拥有设备数量最多的企业是那些在移动性方面IT投入最多的组织。
移动性对于企业最大的一个影响是,人们希望把越来越多的移动设备连接到无线网络上。人们期望的是,“公司授权我使用我的iPhone,所以我应该得到高品质的性能。”Lazar解释道,过去大家的心态是“我要连接有线网络,除非不得不使用无线。”然而现在,无线网络是第一位的。
Lazar阐述移动性的增加带来了六个问题:设备管理,应用管理,内容管理,应用开发,网络性能和桌面统计,以及提供策略来管理他们。基于网络的移动设备管理,应用软件开发和软件定义网络方法都是Lazar的一些建议。
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。