Nemertes Research公司副总裁兼服务部总监Irwin Lazar讨论了关于移动办公的趋势:越来越多的移动设备对无线网络提出了更高的需求。他阐述了设备管理、内容管理、网络性能方面企业面临的挑战,并提供了克服困难的解决策略。
Lazar立足于Nemertes公司每年进行大规模调查的信息,探讨了企业如何评估新兴技术对业务的影响,企业如何制定实施新技术和服务的战略,以及企业如何衡量这些项目的成功。当涉及到移动性,Lazar说业界正面临IT支出、设备带宽、使用量和应用程序方面一个整体的增加,而且目前看不到尽头。现在管理移动性办公最成功的组织是那些每个员工拥有设备数量最多的企业。这并不让人意外,员工拥有设备数量最多的企业是那些在移动性方面IT投入最多的组织。
移动性对于企业最大的一个影响是,人们希望把越来越多的移动设备连接到无线网络上。人们期望的是,“公司授权我使用我的iPhone,所以我应该得到高品质的性能。”Lazar解释道,过去大家的心态是“我要连接有线网络,除非不得不使用无线。”然而现在,无线网络是第一位的。
Lazar阐述移动性的增加带来了六个问题:设备管理,应用管理,内容管理,应用开发,网络性能和桌面统计,以及提供策略来管理他们。基于网络的移动设备管理,应用软件开发和软件定义网络方法都是Lazar的一些建议。
好文章,需要你的鼓励
本文评测了六款控制台平铺终端复用器工具。GNU Screen作为老牌工具功能强大但操作复杂,Tmux更现代化但学习曲线陡峭,Byobu为前两者提供友好界面,Zellij用Rust编写界面简洁易用,DVTM追求极简主义,Twin提供类似TurboVision的文本界面环境。每款工具都有各自特点和适用场景。
纽约大学研究团队通过INT-ACT测试套件全面评估了当前先进的视觉-语言-动作机器人模型,发现了一个普遍存在的"意图-行动差距"问题:机器人能够正确理解任务和识别物体,但在实际动作执行时频频失败。研究还揭示了端到端训练会损害原有语言理解能力,以及多模态挑战下的推理脆弱性,为未来机器人技术发展提供了重要指导。
网络安全公司Snyk宣布收购瑞士人工智能安全研究公司Invariant Labs,收购金额未公开。Invariant Labs从苏黎世联邦理工学院分拆成立,专注于帮助开发者构建安全可靠的AI代理工具和框架。该公司提供Explorer运行时观察仪表板、Gateway轻量级代理、Guardrails策略引擎等产品,并在工具中毒和模型上下文协议漏洞等新兴AI威胁防护方面处于领先地位。此次收购将推进Snyk保护下一代AI原生应用的使命。
北卡罗来纳大学教堂山分校研究团队提出MEXA框架,通过动态选择和聚合多个专业AI模型来处理复杂的多模态推理任务。该方法无需额外训练,在视频理解、音频分析、3D场景理解和医学诊断等多个基准测试中显著超越现有模型,为AI系统设计提供了新思路。