创新光无线网络 (IOWN) 项目近日宣布,其全光网络 (APN) 已成功应用于 5G 无线接入网 (RAN) 基站的天线单元 (Radio Unit, RU) 和分布式单元 (DU) 之间的移动前传网络,实现了动态路由重置功能。
在 NTT 的带领下,IOWN 项目旨在满足未来超连接商业世界的growing需求,通过光子技术提供能够支持超高速、大容量互联网服务的未来全球通信基础设施。在这一使命中,NTT 得到了 Ericsson、Nokia、Sony、Ciena、Intel、Nvidia、Microsoft、Orange、Telefónica 和 Google 等公司的支持。
该项目的目标是应对数据需求的近乎指数级增长,以及未来应用 (特别是人工智能和大语言模型用例) 所需的大量计算能力导致的能源消耗增加。这个网络和信息处理基础设施包括能够利用光学技术提供高速、大容量通信的终端,以及大规模计算资源。
NTT 的 IOWN APN 基础设施正在设计中,旨在通过端到端光连接实现高容量、低延迟和低功耗通信,无需将光信号转换为电信号。
IOWN 解释说,随着 5G 技术的兴起,移动流量不断增加,导致基站和通信设施的功耗升高。此外,预计即将到来的 6G 网络将提供更快的通信速度和更大的数据传输量,进一步增加功耗。
因此,IOWN 强调提高能效是移动运营商和设备供应商面临的重要问题。新举措旨在通过动态路由进一步降低基站和通信设施的功耗,同时提高网络可靠性。
在当前 RU 和 DU 之间的固定点对点光纤连接 (暗光纤) 下,运营商运行的 DU 数量超出实际需要,且连接的 DU 必须始终保持运行以维持服务。通过在移动前传网络中利用 APN,IOWN 表示 RU 可以从与 DU 的点对点物理连接动态重新路由到其他 DU。这使得在移动流量高峰时所有 DU 基站都能运行,而在需求下降时可以切换到更少的 DU,在维持服务的同时整合资源。
此外,由于整合而不再需要的 DU 基站可以关闭以减少功耗 - 不仅包括通信设备,还包括空调在内的整个基站。
在测试中,NTT 提供了一个环境,用于验证和测量 5G 移动通信所需的设备和通信质量,包括终端设备、RU 和 CU/DU。Nokia 提供了 IOWN APN 设备,如 Flexible Bridge、APN-T、APN-G 和 APN-I。Anritsu 提供了测量仪器来评估 APN 延迟并确认 PTP/Sync-E 的正常运行。
最新工作证实,在用户流量通过使用 IOWN APN 的两个移动前传网络的环境中,动态路由更改用时不到 8 分钟,且不会影响更改路由之外的用户流量。更改后流量仍能正常流动。
这一成就使得可以根据移动流量波动灵活切换 DU,实现 DU 基站整合并仅激活必要的 DU 基站,从而减少功耗。此外,在路由故障时,可以快速切换到备用 DU 基站,从而减少对服务的影响并提高网络可靠性。
IOWN 研究了一种程序,该程序最优地结合 RU 更改和 APN 路由更改,以最大限度地减少动态路由调整期间的通信影响。经验证,使用该程序可以成功执行动态路由更改。
为进行验证,IOWN APN 在两个相距 30 公里的移动前传点之间应用。测试环境模拟实时用户流量,同时修改 DU 设备的 RU 设置并调整 APN 设备的光路切换。评估了动态路由更改所需的时间、对通信的影响以及切换后的通信质量。
验证是按照 IOWN Global Forum 的概念验证 (PoC) 参考文件中关于移动网络的 IOWN APN 设备配置和传输方法进行的。
IOWN 表示,验证测试确认在 30 公里的传输距离内,动态路由更改可在不到 8 分钟内完成。通信质量保持不变,包括切换后的数据传输速度和丢包率。更改路由上的用户流量中断,但其他路由不受影响。更改路由前后的功耗降低了约 20%。
IOWN 表示,演示确认可以成功使用 IOWN APN 进行移动前传的动态重路由,实现移动流量波动和故障期间的动态 DU 基站运行,减少功耗和服务影响。
该项目现计划就动态路由更改的节能效果进行示范实验,并缩短动态重路由所需时间以最大限度地减少对服务的影响。
这些实验将模拟实际基站配置、用户数量、流量和基于流量预测的自动路由更改决策,旨在实现高能效和弹性的网络。
好文章,需要你的鼓励
甲骨文公司披露获得一份年价值超过300亿美元的云服务合同,消息传出后股价一度上涨近9%。该合同是甲骨文自4月1日2026财年开始以来赢得的多个大型云服务协议之一,预计从2028财年开始贡献超过300亿美元的年收入。虽然买方身份未公开,但最可能的候选者是OpenAI,两家公司正在合作建设AI数据中心网络项目Stargate。
国立台湾大学等机构开发的MuseControlLite技术实现了音乐AI的重大突破。该系统仅用8500万参数就达到61.1%的旋律控制精度,比现有方法减少6.75倍参数量却性能更优。通过创新的位置编码和解耦交叉注意力机制,系统能同时处理文字、音乐属性和音频信号的多重控制,支持音乐生成、修复和风格迁移等功能,为音乐创作民主化开辟新道路。
AI编程编辑器Cursor背后的公司Anysphere推出网页应用,用户可通过浏览器管理AI编程代理网络。该应用支持桌面和移动端,用户可用自然语言分配编程任务、监控代理工作进度并合并代码更改。Cursor年经常性收入已超5亿美元,被超半数财富500强企业使用。新应用面向Pro计划及更高级别订阅用户开放,旨在降低使用门槛。公司预计到2026年AI编程代理将承担软件工程师至少20%的工作。
马里兰大学研究团队在70亿参数的OLMoE模型中首次发现了真实大型语言模型的"Grokking"现象,即AI在训练误差稳定后仍能实现智能突破。他们开发了基于混合专家模型思维路径分析的新方法,能够在无需外部测试的情况下准确预测AI的泛化能力,为AI开发和评估提供了革命性的实时监控工具。