Pegasus 利用零日漏洞——即苹果尚未发现的安全漏洞进行攻击,但 iPhone 制造商有其他应对方法...
苹果致力于检测 Pegasus 间谍软件
iOS 系统包含了专门的代码,即使在苹果还不知道具体攻击方法的情况下,也能检测出 iPhone 是否被间谍软件入侵。
当发现用户设备可能被感染间谍软件时,公司会向这些用户发出通知,同时努力查明被利用的安全漏洞。例如,去年夏天,苹果向近 100 个国家的 iPhone 用户发出了警告。
公司表示,虽然无法 100% 确定其判断,但有很高的置信度,并敦促收到消息的用户认真对待安全警告。
此类事件已有多次发生:
目前仅检测出一半被感染设备
然而,最新报告显示,苹果目前只能检测出约一半的被感染设备。
这项数据来自移动安全公司 iVerify,该公司去年推出了一款售价 1 美元的应用程序,允许用户扫描自己的手机并将结果发送给他们进行分析。一次性付费可以每月进行一次扫描。
这些扫描数据使该公司能够估算 Pegasus 感染的普遍程度,并检查有多少被确认感染的用户收到了苹果的通知。
加入这些新检测数据后,全球感染率降至每 1000 次扫描约 1.5 次 Pegasus 检测;然而,更大的样本量增加了我们对这一数据更接近真实感染率的信心,并让我们能够得出更有意思的结论。
例如,我们发现移动设备受损的情况已经超出了政治家和活动家等高价值目标的范围,实际上影响到了社会的各个层面。这些新确认的检测涉及 2021-2023 年间已知的 Pegasus 变体,包括针对政府、金融、物流和房地产行业用户的攻击。许多用户被多个变体攻击并被监视多年。
更重要的是,在约一半的案例中,目标用户并未收到苹果的威胁通知。如果这些用户没有使用 iVerify,他们将不会知道自己的设备已被入侵。
iVerify 表示,他们非常谨慎,只统计了那些 100% 确定被感染的手机。
好文章,需要你的鼓励
这篇研究论文介绍了"Speechless",一种创新方法,可以在不使用实际语音数据的情况下训练语音指令模型,特别适用于越南语等低资源语言。研究团队通过将文本指令转换为语义表示,绕过了对高质量文本转语音(TTS)系统的依赖。该方法分三个阶段:首先训练量化器将语音转为语义标记;然后训练Speechless模型将文本转为这些标记;最后用生成的合成数据微调大型语言模型。实验表明,该方法在越南语ASR任务中表现出色,为低资源语言的语音助手开发提供了经济高效的解决方案。
《Transformer Copilot》论文提出了一种革命性的大语言模型微调框架,通过系统记录和利用模型训练过程中的"错误日志"来提升推理性能。研究团队受人类学习者记录和反思错误的启发,设计了一个"副驾驶"模型来辅助原始"驾驶员"模型,通过学习错误模式并在推理时校正输出。这一方法在12个基准测试上使模型性能提升高达34.5%,同时保持计算开销最小,展现了强大的可扩展性和可迁移性,为大语言模型的优化提供了全新思路。
德克萨斯大学Austin分校的研究团队提出了RIPT-VLA,一种创新的视觉-语言-动作模型后训练范式。该方法通过让AI模型与环境互动并仅接收简单的成功/失败反馈来学习,无需复杂的奖励函数或价值模型。实验证明,RIPT-VLA能显著提升现有模型性能,在轻量级QueST模型上平均提升21.2%,将大型OpenVLA-OFT模型推至97.5%的前所未有成功率。最令人惊叹的是,仅用一个示范样本,它就能将几乎不可用的模型在15次迭代内从4%提升至97%的成功率,展现出卓越的数据效率和适应能力。
北京大学与华为诺亚方舟实验室研究团队共同开发了TIME基准,这是首个专为评估大语言模型在真实世界场景中的时间推理能力而设计的多层级基准。该研究提出了三个层级的时间推理框架,包含11个细粒度任务,并构建了涵盖38,522个问答对的数据集,针对知识密集型信息、快速变化的事件动态和社交互动中的复杂时间依赖性三大现实挑战。实验结果表明,即使是先进模型在构建时间线和理解复杂时间关系方面仍面临显著挑战,而测试时扩展技术可明显提升时间逻辑推理能力。