New Relic 已将其可观测性平台扩展至 DeepSeek,帮助企业简化使用开源大语言模型开发、部署和监控生成式 AI 应用的流程。
随着 Gartner 预测到 2026 年将有超过 80% 的企业会使用或部署生成式 AI 应用,此举正是为了满足企业在日益复杂的 AI 领域中的迫切需求。
New Relic 首席执行官 Ashan Willy 表示:"在当今竞争激烈的环境中,组织面临着做出明智 AI 实施决策的压力。可观测性通过提供 AI 技术栈的全面可视化来解决这一问题。我们正在扩展平台以支持使用 DeepSeek 构建的 AI 应用,使企业能够自信地决定部署哪些 AI 模型以及如何最有效地使用它们。"
Willy 补充说,DeepSeek 的成本效益模型与 New Relic 在可观测性和应用性能监控 (APM) 方面的专业知识相结合,可以为企业在快速发展的 AI 市场中提供显著优势。
New Relic 与 DeepSeek 的集成扩充了其拥有超过 60 个 AI 集成的生态系统,包括最近新增的 Nvidia Inference Microservices (NIM) 和 Amazon Bedrock。该平台还支持与 OpenAI、Claude、Langchain 和 Pinecone 等主要 AI 参与者的集成。
AI 应用带来了技术栈复杂性、安全性问题和潜在成本超支等挑战。New Relic 的 AI 监控提供了 AI 技术栈的全面概览,在遵守数据隐私要求的同时跟踪吞吐量、延迟和成本等指标。它还跟踪服务和模型之间的请求流,以提供对 AI 应用运作机制的深入洞察。
在开源模型如 DeepSeek 带来新的安全风险的同时,对可观测性能力的需求也在不断增长。
Sophos 全球首席技术官 Chester Wisniewski 表示:"DeepSeek 的可访问性使得善意用户和恶意行为者都能够进行探索。与 Llama 类似,其防护机制可以被很大程度地移除。这可能被网络犯罪分子滥用,尽管需要承认运行 DeepSeek 需要大量资源。"
Wisniewski 还强调了由于 DeepSeek 的成本优势而预期的广泛采用可能带来的隐私风险:"对于公司来说,进行全面的风险评估至关重要,包括可能整合 DeepSeek 或任何未来大语言模型的产品和供应商。他们还必须确保拥有做出明智决策所需的专业知识。"
Keeper Security 的首席执行官兼联合创始人 Darren Guccione 呼应了这些担忧,敦促企业仔细评估风险,特别是当这些平台在监管环境较不透明的情况下运营时。
Guccione 说:"保持对供应商合规性的可见性同样重要。确保供应商遵守认可的安全认证,如 SOC 2 (系统和组织控制 2) 和 ISO 27001,表明他们致力于健全的安全实践和监管合规。这些认证可以确保供应商维持高标准的安全性,包括遵守国际法规。"
他补充道:"培养一个知情和警惕的工作场所可以显著降低风险。教育员工了解外部平台的潜在风险并强调网络安全最佳实践,使组织能够安全地在不断发展的 AI 领域中前进。"
好文章,需要你的鼓励
在迪拜Gitex 2025大会上,阿联酋成为全球AI领导者的雄心备受关注。微软正帮助该地区组织从AI实验阶段转向实际应用,通过三重方法提供AI助手、协同AI代理和AI战略顾问。微软已在阿联酋大举投资数据中心,去年培训了10万名政府员工,计划到2027年培训100万学习者。阿联酋任命了全球首位AI部长,各部门都配备了首席AI官。微软与政府机构和企业合作,在公民服务和金融流程等领域实现AI的实际应用,构建全面的AI生态系统。
查尔斯大学和意大利布鲁诺·凯斯勒基金会的研究团队首次系统性解决了同声传译AI系统延迟评估的准确性问题。他们发现现有评估方法存在严重偏差,常给出相互矛盾的结果,并提出了YAAL新指标和SOFTSEGMENTER对齐工具。YAAL准确性达96%,比传统方法提升20多个百分点。研究还开发了专门的长音频评估工具LongYAAL,为AI翻译技术发展提供了可靠的测量标准。
苹果与俄亥俄州立大学研究人员发布名为FS-DFM的新模型,采用少步离散流匹配技术,仅需8轮快速优化即可生成完整长文本,效果媲美需要上千步骤的扩散模型。该模型通过三步训练法:处理不同优化预算、使用教师模型指导、调整迭代机制来实现突破。测试显示,参数量仅1.7亿至17亿的FS-DFM变体在困惑度和熵值指标上均优于70-80亿参数的大型扩散模型。
印度理工学院团队构建了史上最大规模印度文化AI测试基准DRISHTIKON,包含64288道多语言多模态题目,覆盖15种语言和36个地区。研究评估了13个主流AI模型的文化理解能力,发现即使最先进的AI也存在显著文化盲区,特别是在低资源语言和复杂推理任务上表现不佳,为构建文化感知AI提供了重要指导。