爱立信实验室利用三个FDD(频分双工)频段和三个低于6GHz 的TDD(时分双工)频段(是不是感到吃惊)、爱立信RAN计算硬件、载波聚合软件和高级RAN协调功能(Advanced RAN Coordination functionality)实现了这次数据呼叫。
据悉,将FDD频谱与TDD频谱结合可以让更多用户从载波聚合增益中获益。总计400MHz的带宽与20MHz至50MHz的FDD带宽聚合在一起,实现了5.7Gbps的速度。
六分量载波能力的意义何在?据悉,它可以让运营商优化利用网络和频谱资产,并提供更高的数据速度和容量,从而帮助重度使用下行链路的应用。新闻发布稿表示,“这意味着为流媒体用户提供更好的音频和视频质量、更快的文件下载速度,以及为数字游民提供更好的工作环境。”换句话说就是:更好的5G。
爱立信网络5G RAN产品线主管Sibel Tombaz表示:“我们在不断挖掘载波聚合在提升容量和速度方面的潜力,推动载波聚合的发展。”“我们6CC数据呼叫的成功表明了我们解决方案的通用性,我们准备与生态系统合作伙伴合作,将这一新的频段组合变为现实。我们的目标一如既往,就是帮助客户满足终端用户对大容量、超高速5G日益增长的需求。”
Tombaz补充表示:“载波聚合对于尽可能从分散的频谱资产中获得最佳的5G性能至关重要。”“有了6CC,服务提供商将能够最大限度地利用手头的频谱,优化组合带宽,从而获得卓越的移动体验。”
上周,竞争对手套件供应商诺基亚与TPG和联发科技合作,展示了如何利用载波聚合来传输360度实时元宇宙广播。这次演示使用了700 MHz频段(n28)上的15MHz载波和3.6GHz频段(n78)上的90MHz载波,通过载波聚合实现了159Mbps 的峰值上行速度。
今年7月,T-Mobile在美国的5G独立(SA)网络上推出了四载波聚合技术。它合并了四个6GHz以下频段的5G信道以提高性能,包括两个2.5GHz超大容量5G信道、一个1900MHz信道和一个600MHz 信道。
这是继去年一系列“世界首创”载波聚合试验之后的又一重大突破。
爱立信表示这一突破也是世界首创,这很可能确实是世界首创,不过,要想保持这些技术上全然不同的载波聚合的实验室记录不被打破恐怕有点困难——不过,进步就是进步。
好文章,需要你的鼓励
继苹果和其他厂商之后,Google正在加大力度推广其在智能手机上的人工智能功能。该公司试图通过展示AI在移动设备上的实用性和创新性来吸引消费者关注,希望说服用户相信手机AI功能的价值。Google面临的挑战是如何让消费者真正体验到AI带来的便利,并将这些技术优势转化为市场竞争力。
麻省理工学院研究团队发现大语言模型"幻觉"现象的新根源:注意力机制存在固有缺陷。研究通过理论分析和实验证明,即使在理想条件下,注意力机制在处理多步推理任务时也会出现系统性错误。这一发现挑战了仅通过扩大模型规模就能解决所有问题的观点,为未来AI架构发展指明新方向,提醒用户在复杂推理任务中谨慎使用AI工具。
Meta为Facebook和Instagram推出全新AI翻译工具,可实时将用户生成内容转换为其他语言。该功能在2024年Meta Connect大会上宣布,旨在打破语言壁垒,让视频和短视频内容触达更广泛的国际受众。目前支持英语和西班牙语互译,后续将增加更多语言。创作者还可使用AI唇形同步功能,创造无缝的口型匹配效果,并可通过创作者控制面板随时关闭该功能。
中科院自动化所等机构联合发布MM-RLHF研究,构建了史上最大的多模态AI对齐数据集,包含12万个精细人工标注样本。研究提出批评式奖励模型和动态奖励缩放算法,显著提升多模态AI的安全性和对话能力,为构建真正符合人类价值观的AI系统提供了突破性解决方案。