如今,大多数企业都制定了某种多云战略,但在连接到公有云和私有云的时候,仍然面临挑战。互联网提供了尽可能好的网络接入,但是网络质量的不一致,会大大影响应用性能。
通过传统的多协议标签交换(MPLS)连接到互联网,并不能提供类似云、让企业能够纵向向上或者向下的敏捷性。尽管私有云直接互连是最安全、也是性能最佳的连接方式,但需要预先规划容量,而这有可能导致利用率不高和成本上升等问题。
这就是为什么每个采用多云战略的企业组织都需要重新考量网络和连接策略的原因。与其将软件定义的广域网(SD-WAN)视为最后一英里的解决方案,企业组织还不如将SD-WAN与专用网络相结合来实现中间一英里的性能,从而从中受益匪浅。
因此,思科和Megaport提出了一种解决方案,通过自动无缝链接到SD-WAN和多云环境来避免以上所有这些复杂性。
近日,思科SD-WAN产品管理高级经理Vipul Shah和Megaport公司首席技术官Jim Brinksma就联合解决方案接受了采访,采访要点如下:
早在2020 年,思科与Megaport展开合作,大大缩短了将企业SD-WAN站点桥接到云所需的时间。随后两家厂商推出了Cisco Software Defined Cloud Interconnect (SDCI)和Megaport Virtual Edge (MVE)的集成功能,其中MVE是一种按需的、厂商中立的网络功能虚拟化(NFV)服务,可实现分支到云的连接。
Megaport提供网络站点和云之间的私有连接。MVE允许企业组织在Megaport的私有全球软件定义网络(SDN)上托管网络功能,该网络拥有700多个支持Megaport的数据中心以及200多个云入口,可连接到大多数主流云提供商,包括AWS、微软Azure、Google Cloud和Oracle等。
MVE采用了具有网络和计算能力的设备。在计算方面,企业组织可以获得SD-WAN控制器和其他网络功能的虚拟实例。在网络方面,Megaport的私有网络配备了中转网关,让企业组织可以将分支机构连接到云、分支机构连接到分支机构、分支机构连接到数据中心、数据中心连接到数据中心等等。
思科与Megaport的合作,通过一个无处不在的平台简化了整个网络的管理。大多数SD-WAN解决方案都专注于最后一英里,但思科解决了“中间一英里”的问题。企业组织可以使用Cisco SD-WAN vManage控制器,通过一个自动化工作流程部署Megaport底层连接。集成的Cisco SD-WAN Cloud Interconnect/Megaport MVE解决方案可保证服务水平协议(SLA),随时随地将用户和应用连接到任何网络。
Cisco SD-WAN Cloud Interconnect with Megaport的主要用途是连接多云工作负载,该解决方案简化了运行全球网络的运营工作。过去,连接到云提供商需要单独的点对点连接。管理每个云的策略和虚拟专用网络(VPN)通道是一项操作密集型工作,配置云就需要数周甚至是数月的时间。
现在,企业可以通过Cisco SD-WAN vManage控制器在10分钟或更短的时间内,创建接入他们多云环境的网络连接。网络管理员可以从全栈自动化中受益,同时满足低成本、低延迟方面的要求,从而显着降低网络的运营费用(OPEX)。他们可以管理策略并轻松地向上和向下扩展连接。
思科将继续通过Megaport投资SDCI。短期内,客户将看到更多的连接和扩展选项。对于那些连接到多云环境时需要端到端加密的用户来说,他们可以利用思科的云路由器将SD-WAN从Megaport MVE扩展到云中。思科计划在Megaport MVE中为云路由器提供更高的带宽,这对于那些需要规避风险的组织来说特别有利。
好文章,需要你的鼓励
据报道,OpenAI正与亚马逊洽谈至少100亿美元的融资。亚马逊此前已是Anthropic的最大投资者,并为其建设了110亿美元的数据中心园区。若融资达成,OpenAI将采用AWS的Trainium系列AI芯片。Trainium3采用三纳米工艺,配备八核心和32MB SRAM内存。AWS可将数千台服务器连接成拥有百万芯片的集群。报道未透露具体估值,但OpenAI最近一次二次出售估值已达5000亿美元。
伊斯法罕大学研究团队通过分析Google Play商店21款AI教育应用的用户评论,发现作业辅导类应用获得超80%正面评价,而语言学习和管理系统类应用表现较差。用户赞赏AI工具的快速响应和个性化指导,但抱怨收费过高、准确性不稳定等问题。研究建议开发者关注自适应个性化,政策制定者建立相关规范,未来发展方向为混合AI-人类模型。
各行业企业存储的数据量持续攀升,5PB以上已成常态,10PB以上也日益普遍。2026年非结构化数据管理的主题是全面增长:更多数据、更多投资、更多痛点以及更多AI安全风险。AI应用加速普及、数字化信息激增以及富媒体和传感器数据大幅增加推动了数据增长。随着AI推理应用的发展,企业将意识到非结构化数据管理对AI投资回报率的关键作用。
这项由伊利诺伊大学香槟分校等四所院校联合完成的研究,提出了名为DaSH的层次化数据选择方法。该方法突破了传统数据选择只关注单个样本的局限,通过建模数据的天然层次结构,实现了更智能高效的数据集选择。在两个公开基准测试中,DaSH相比现有方法提升了高达26.2%的准确率,同时大幅减少了所需的探索步数。