思科昨天宣布计划收购软件初创公司Sedona Systems,该公司可使用其软件监控网络的运行状况并模拟各种网络变更。
此次收购的交易条款没有对外透露。总部位于美国加州洛阿尔托的Sedona此公司此前曾从英特尔、Bessemer Venture Partners等投资方那里筹集了资金。
之所以收购Sedona,是因为思科一直在打造自己的产品组合以简化对光网络设备和非光网络设备的网络管理,同样专注于该领域的Sedona将有助于推动思科的这一产品路线发展。几个月前,思科刚刚以45亿美元的价格收购了Acacia Communications,其是一家为光网络构建提供芯片的制造商。
由于存在技术兼容性方面的挑战,因此企业通常必须分开管理光纤设备和其他网络设备,这就加大了性能故障排除之类的任务难度。Sedona的产品是一个名为NetFusion的软件平台,通过提供集中化的监控器界面简化故障排除过程,允许管理员通过一个平台跟踪光网络组件和其他设备的运行状况。
NetFusion可以了解网络中的哪些部分正出现流量下降和中断问题,找到问题发生的位置之后,管理员可以使用平台内置的分析功能来确定造成该问题的原因。
NetFusion的监控功能并不是思科决定收购Sedona的唯一原因。思科服务提供商网络系统业务产品管理副总裁Kevin Wollenweber今天在博客中指出,Sedona的平台还提供了模拟网络变化的功能,企业可以利用NetFusion创建其网络的模拟副本,虚拟测试更新,从而可以提前发现漏洞以防止投入到生产环境之后出现问题。
思科认为,此次收购将为思科客户群中的电信提供商带来特别的好处。运营商拥有跨越大地理区域的复杂网络,包括光纤设备在内的各种类型的硬件设备。运营商网络的复杂性,再加上要应对数据流量越来越快的问题,让排除技术故障变成一个严峻的挑战。
思科希望通过收购Sedona来应对这一挑战。收购完成之后,思科的电信客户将能够“快速地从原来跨独立团队的、繁冗的手动操作方式,转变成完全自动化的、通过一个简单界面就能轻松管理的网络,”Wollenweber这样写道。
Wollenweber表示:“现代化运营对于改变大规模运营网络的经常性成本来说至关重要。通常每在设备上花费1美元,就需要5美元的运营成本。这个情况必须得到改变。”
一个重要的细节是,作为在一个统一位置监控多类型网络设备功能的组成部分,Sedona NetFusion平台支持来自不同硬件提供商的设备。可以跨不同供应商设备集中化管理的能力,使其在技术上更适合那些混合部署了多供应商产品的运营商。反过来,这也为优化基础设施创造了新的机会。
好文章,需要你的鼓励
来自香港科技大学和MiniMax的研究团队开发了SynLogic,一个可合成35种逻辑推理任务的框架与数据集,填补了AI逻辑训练资源缺口。研究表明,在SynLogic上进行强化学习训练显著提升了模型逻辑推理能力,32B模型在BBEH测试中超越了DeepSeek-R1-Distill模型6个百分点。更值得注意的是,将SynLogic与数学和编程数据混合训练不仅提高了这些领域的学习效率,还增强了模型的泛化能力,表明逻辑推理是构建通用AI推理能力的重要基础。
这项研究揭示了大型语言模型的惊人能力:只需两个特殊训练的向量,冻结的语言模型就能在一次计算中生成数百个准确词汇,而非传统的逐词生成。研究者发现,这种能力要求特定的输入排列方式,且生成速度比自回归方法快约279倍。这一发现不仅展示了语言模型未被充分探索的并行生成潜力,还为快速文本重建开辟了新方向。
腾讯混元团队提出的"ConciseR"是一种通过两阶段强化学习实现大模型简洁推理的新方法。研究遵循"先走后跑"原则,先确保模型具备准确推理能力,再优化输出简洁性。第一阶段通过改进的群体相对策略优化(GRPO++)提升推理能力,第二阶段通过长度感知的群体相对策略优化(L-GRPO)减少输出长度。实验结果显示,该方法在AIME、MATH-500等多个基准测试中既减少了输出长度(平均20%以上),又保持或提高了准确率,展现出高效率-高准确率的理想平衡。
这项由香港科技大学团队开展的研究首次全面评估了压缩对大语言模型Agent能力的影响。研究发现,虽然4位量化能较好地保留工作流生成和工具使用能力(仅下降1%-3%),但在实际应用中性能下降达10%-15%。团队提出的ACBench基准测试横跨工具使用、工作流生成、长文本理解和实际应用四大能力,评估了不同压缩方法对15种模型的影响。结果显示,AWQ量化效果最佳,蒸馏模型在Agent任务上表现不佳,大型模型对压缩更具韧性。研究还提出ERank等创新分析方法,为实际部署提供了切实指导。