至顶网网络频道 11月14日 编译:思科称“在将基于意图的网络引入每个领域”,并称最新分支机构需要软件定义广域网功能和安全性。
上述言论来自产品管理高级经理Sachin Gupta,他告诉记者,云已经摧毁了传统的“网络边缘”概念,而软件定义广域网(SD-WAN)则可以令多云世界里的数据包迁移更容易,而要保护这些环境会涉及到大量的工作。
Gupta告诉记者,“云的'边缘非常地不固定',可能在你的总部、分部、数据中心或云中。”而企业在任何地方都需要相同的安全性,而且又不能破坏云服务的舒适性。
思科宣布发布的三方面的产品包括:一些新设备;Cisco Umbrella获得SD-WAN支持;Office 365的SD-WAN支持。三者都符合思科基于意图的网络战略。
新设备是ISR 1111X-8P和ISR 4461,两者都针对具有整合SD-WAN支持的分支部署,即时有售。其中的ISR 1111X-8P是一款支持Wi-Fi和LTE的紧凑型设备,而ISR 4661则面向最大的分支机构及整合了存储和计算功能。
安全性方面包括整合防火墙、入侵防御和网址过滤,Cisco Umbrella则简化了这些产品的部署。Gupta解释说,那些试图从不同的设备和接口实现SD-WAN和安全性的人要自己完成“大量的动作”,这些动作“成本高、容易出错”。
思科推出的SD-WAN功能遵循基于意图的网络目标,目标是将几个星期的工作压缩到几个小时,而且是通过单个vManage界面实现一切。
同样的vManage界面还可以使得系统管理员通过一个操作将所有分支站点置于Cisco Umbrella之下。Gupta提到,系统管理可以在本地或在云中进行。
Gupta表示,推出的安全功能不需要单独的许可证,是嵌入到现有的三个SD-WAN许可证层里的。
思科宣布的产品自然少不了开放API和DevNet,否则就不是思科2018年发布的产品了。推出的API可访问所有思科SD-WAN功能,因此第三方可以令自己的应用程序与SD-WAN通信,而DevNet则拥有新的SD-WAN学习实验室和沙箱。
为什么要整合Office 365
思科在推出设备、安全性和多云管理的同时,推出的Office 365优化产品看起来有点格格不入,但Gupta表示,大多数人在公司里的时间基本建立在微软套件上,而在云环境里低性能会严重影响生产力。
终端用户可能要从总部通过分支网关、企业数据中心、第三方主机托管中心或4G访问Office 365。他表示,“客户有多种方法连接到云里。”
为了解决这个问题,SD-WAN提供了对“微软Office 365云的所有可用路径”的实时监控,并使用微软Office URL识别最接近用户的云。
Gupta表示,“大家都期望在自己办公室的桌面上获得相同的性能。”思科推出的整合旨在自动采用“最佳路径、最可靠路径,以期获得最佳性能”。
当然,能了解不同路由到主机的性能是思科的核心竞争力,但Gupta表示,Office 365整合了超越“ping _host_”的做法,可选择最佳路由,而且还不仅仅是事关识别和优先处理Office 365流量。
Gupta表示,“我可以从应用程序本身获取有关应用程序运行情况的数据。因此,尽管路径A速度更快,但路径B具有更好的延迟,而这个正是目前最重要的。”
Gupta最后补充到,“性能特征在不同的线路上会发生变化。有时最短的路径不是最好的路径。”
好文章,需要你的鼓励
本文探讨如何使用生成式AI和大语言模型作为倾听者,帮助用户表达内心想法。许多主流AI如ChatGPT、Claude等被设计成用户的"最佳伙伴",或试图提供心理健康建议,但有时用户只想要一个尊重的倾听者。文章提供了有效的提示词技巧,指导AI保持中性、尊重的态度,专注于倾听和理解,而非给出建议或判断。同时提醒用户注意隐私保护和AI的局限性。
北京大学团队开发出WoW世界模型,这是首个真正理解物理规律的AI系统。通过200万机器人互动数据训练,WoW不仅能生成逼真视频,更能理解重力、碰撞等物理定律。其创新的SOPHIA框架让AI具备自我纠错能力,在物理理解测试中达到80.16%准确率。该技术将推动智能机器人、视频制作等领域发展,为通用人工智能奠定重要基础。
人工通用智能和超级人工智能的出现,可能会创造出一种全新的外星智能形态。传统AI基于人类智能模式构建,但AGI和ASI一旦存在,可能会选择创造完全不同于人类认知方式的新型智能。这种外星人工智能既可能带来突破性进展,如找到癌症治愈方法,也可能存在未知风险。目前尚不确定这种新智能形态是否会超越人类智能,以及我们是否应该追求这一可能改变人类命运的技术突破。
香港大学和蚂蚁集团联合推出PromptCoT 2.0,这是一种让AI自动生成高质量训练题目的创新方法。通过"概念-思路-题目"的三步策略,AI能像老师备课一样先构思解题思路再出题,大幅提升了题目质量和训练效果。实验显示该方法在数学竞赛和编程任务上都取得了显著提升,为解决AI训练数据稀缺问题提供了新思路。