至顶网网络频道 01月16日 综合消息: 近日,思博伦通信助力业界领先的以太网交换芯片及SDN白牌解决方案提供商盛科网络,成功完成了面向5G时代的速率基础和业务基础联合测试,展示了富有前瞻性的5G网络承载与互联方案。
本次联合测试针对5G网络更高的传输速率和更为灵活的传输组网特点,重点验证了盛科E550平台面向5G的100G/50G/25G基础速率下互联和高性能转发能力,快速重路由(Fast Re-route,FRR)能力和分段路由支持能力,测试结果展示了盛科网络E550平台卓越的以太网交换性能以及对5G承载网络关键技术上的支持与创新。
5G时代随着超高清视频、网络直播、游戏、VR等大带宽应用的进一步发展,网络承载速率将迈入“后10GE”时代,25GE、50GE甚至100GE将成为接入及汇聚网络的主流速率。在业务层面上,面对更加丰富的业务和多样的用户需求,运营商需要实现承载网络的更加可订制化和职能化,SDN架构将在5G承载网络中得到极大的应用,其中以MPLS标签为承载基础的分段路由已经得到包括中国移动在内的运营商的极大关注,其面向SDN的业务部署灵活性和基于标签的转发架构很好的将传统业务框架与新型业务部署方式有效结合,在保障安全及性能的同时提供了丰富的业务灵活性。
测试展示的盛科E550平台是基于盛科网络2017年10月最新发布的第五代高性能以太网核心交换芯片DUET2(CTC7148)搭建,DUET2单芯片可支持640Gbps的转发速率,以“融合创新”为关键词,主打面向5G的“速率融合”、“应用融合”以及“安全融合”。具体包括支持Multi-Gig新速率,支持10G/25G/40G/50G/100G端口、分段路由、无线管理协议CAPWAP专有引擎及网络安全MACSec等新特性。在创新应用的同时,DUET2也延续并增强了其系列芯片高性价比和低功耗的优势。
测试采用思博伦Spirent TestCenter网络性能测试仪,配以目前业界密度最高的DX3-100GQ-T12多速率测试模块。DX3-100GQ-T12五速率测试模块,单槽位可支持12个100G或40G端口,或24个50G端口,或48个25G或10G端口,支持BASE-R FEC、RS-FEC、Auto-negotiation、Link Training等关键接口特性,支持包括传统路由/交换/接入协议和新的OpenFlow、分段路由等SDN技术测试,能够对高密度路由器、交换机和移动承载网络产品进行全面测试。
盛科网络市场部总监王峰表示:“盛科一直致力于为客户提供最富竞争力和创新力的网络承载方案。盛科过去的芯片已经规模部署在国内外的运营商承载网络,赢得了客户的好评。盛科也投入了大量的研发来满足5G时代的全新要求和挑战。除了基础速率的快速升级,应用的融合和SDN理念的实践落地也为网络的发展注入了新的活力。我们很高兴能够和思博伦一起,借助盛科的最新芯片平台,展示面向5G的网络互联关键技术创新,也期待这些技术能够在不久的将来,为5G业务的部署与发展贡献力量。”
思博伦通信高级销售总监马林表示:“中国在第五代移动通信的投资上目前领先于全球,所以在中国我们率先看到5G网络相关的技术和方案获得进展和突破。思博伦通信在5G相关的承载网技术测试、空口技术测试、核心网技术测试等方面,都投入大量研发资源,并已经推出对应的测试解决方案。本次和盛科网络的联合测试是思博伦通信在5G承载网络测试上的一次非常有意义的实践,思博伦愿意与包括芯片厂商、设备厂商和运营商一起,推动5G网络的发展。”
好文章,需要你的鼓励
阿里团队推出首个AI物理推理综合测试平台DeepPHY,通过六个物理环境全面评估视觉语言模型的物理推理能力。研究发现即使最先进的AI模型在物理预测和控制方面仍远落后于人类,揭示了描述性知识与程序性控制间的根本脱节,为AI技术发展指明了重要方向。
AIM Intelligence联合多所知名大学揭示了音频AI系统的重大安全漏洞,开发出名为WhisperInject的攻击方法。这种攻击能让看似无害的音频指令操控AI生成危险内容,成功率超过86%,完全绕过现有安全机制。研究暴露了多模态AI系统的系统性安全风险,对全球数十亿智能设备构成潜在威胁。
微软八月补丁星期二更新修复了超过100个漏洞,其中包括8个关键的远程代码执行漏洞,影响DirectX、Hyper-V、Office等多个产品。此外还修复了Windows NTLM权限提升漏洞、Hyper-V信息泄露漏洞等。值得关注的是Windows Kerberos权限提升漏洞CVE-2025-53779,虽然已有公开利用代码但暂无实际攻击证据。SharePoint的两个漏洞也需重点关注,特别是RCE漏洞CVE-2025-49712可能与已知认证绕过漏洞组合使用。
新加坡国立大学研究团队系统梳理了视觉强化学习领域的最新进展,涵盖超过200项代表性工作。研究将该领域归纳为四大方向:多模态大语言模型、视觉生成、统一模型框架和视觉-语言-动作模型,分析了从RLHF到可验证奖励范式的政策优化策略演进,并识别出样本效率、泛化能力和安全部署等关键挑战,为这一快速发展的交叉学科提供了完整的技术地图。