至顶网网络频道 01月16日 综合消息: 近日,思博伦通信助力业界领先的以太网交换芯片及SDN白牌解决方案提供商盛科网络,成功完成了面向5G时代的速率基础和业务基础联合测试,展示了富有前瞻性的5G网络承载与互联方案。
本次联合测试针对5G网络更高的传输速率和更为灵活的传输组网特点,重点验证了盛科E550平台面向5G的100G/50G/25G基础速率下互联和高性能转发能力,快速重路由(Fast Re-route,FRR)能力和分段路由支持能力,测试结果展示了盛科网络E550平台卓越的以太网交换性能以及对5G承载网络关键技术上的支持与创新。
5G时代随着超高清视频、网络直播、游戏、VR等大带宽应用的进一步发展,网络承载速率将迈入“后10GE”时代,25GE、50GE甚至100GE将成为接入及汇聚网络的主流速率。在业务层面上,面对更加丰富的业务和多样的用户需求,运营商需要实现承载网络的更加可订制化和职能化,SDN架构将在5G承载网络中得到极大的应用,其中以MPLS标签为承载基础的分段路由已经得到包括中国移动在内的运营商的极大关注,其面向SDN的业务部署灵活性和基于标签的转发架构很好的将传统业务框架与新型业务部署方式有效结合,在保障安全及性能的同时提供了丰富的业务灵活性。
测试展示的盛科E550平台是基于盛科网络2017年10月最新发布的第五代高性能以太网核心交换芯片DUET2(CTC7148)搭建,DUET2单芯片可支持640Gbps的转发速率,以“融合创新”为关键词,主打面向5G的“速率融合”、“应用融合”以及“安全融合”。具体包括支持Multi-Gig新速率,支持10G/25G/40G/50G/100G端口、分段路由、无线管理协议CAPWAP专有引擎及网络安全MACSec等新特性。在创新应用的同时,DUET2也延续并增强了其系列芯片高性价比和低功耗的优势。
测试采用思博伦Spirent TestCenter网络性能测试仪,配以目前业界密度最高的DX3-100GQ-T12多速率测试模块。DX3-100GQ-T12五速率测试模块,单槽位可支持12个100G或40G端口,或24个50G端口,或48个25G或10G端口,支持BASE-R FEC、RS-FEC、Auto-negotiation、Link Training等关键接口特性,支持包括传统路由/交换/接入协议和新的OpenFlow、分段路由等SDN技术测试,能够对高密度路由器、交换机和移动承载网络产品进行全面测试。
盛科网络市场部总监王峰表示:“盛科一直致力于为客户提供最富竞争力和创新力的网络承载方案。盛科过去的芯片已经规模部署在国内外的运营商承载网络,赢得了客户的好评。盛科也投入了大量的研发来满足5G时代的全新要求和挑战。除了基础速率的快速升级,应用的融合和SDN理念的实践落地也为网络的发展注入了新的活力。我们很高兴能够和思博伦一起,借助盛科的最新芯片平台,展示面向5G的网络互联关键技术创新,也期待这些技术能够在不久的将来,为5G业务的部署与发展贡献力量。”
思博伦通信高级销售总监马林表示:“中国在第五代移动通信的投资上目前领先于全球,所以在中国我们率先看到5G网络相关的技术和方案获得进展和突破。思博伦通信在5G相关的承载网技术测试、空口技术测试、核心网技术测试等方面,都投入大量研发资源,并已经推出对应的测试解决方案。本次和盛科网络的联合测试是思博伦通信在5G承载网络测试上的一次非常有意义的实践,思博伦愿意与包括芯片厂商、设备厂商和运营商一起,推动5G网络的发展。”
好文章,需要你的鼓励
AI颠覆预计将在2026年持续,推动企业适应不断演进的技术并扩大规模。国际奥委会、Moderna和Sportradar的领导者在纽约路透社峰会上分享了他们的AI策略。讨论焦点包括自建AI与购买第三方资源的选择,AI在内部流程优化和外部产品开发中的应用,以及小型模型在日常应用中的潜力。专家建议,企业应将AI建设融入企业文化,以创新而非成本节约为驱动力。
字节跳动等机构联合发布GAR技术,让AI能同时理解图像的全局和局部信息,实现对多个区域间复杂关系的准确分析。该技术通过RoI对齐特征重放方法,在保持全局视野的同时提取精确细节,在多项测试中表现出色,甚至在某些指标上超越了体积更大的模型,为AI视觉理解能力带来重要突破。
Spotify在新西兰测试推出AI提示播放列表功能,用户可通过文字描述需求让AI根据指令和听歌历史生成个性化播放列表。该功能允许用户设置定期刷新,相当于创建可控制算法的每周发现播放列表。这是Spotify赋予用户更多控制权努力的一部分,此前其AI DJ功能也增加了语音提示选项,反映了各平台让用户更好控制算法推荐的趋势。
Inclusion AI团队推出首个开源万亿参数思维模型Ring-1T,通过IcePop、C3PO++和ASystem三项核心技术突破,解决了超大规模强化学习训练的稳定性和效率难题。该模型在AIME-2025获得93.4分,IMO-2025达到银牌水平,CodeForces获得2088分,展现出卓越的数学推理和编程能力,为AI推理能力发展树立了新的里程碑。