微软公司人工智能红队日前发布了一份新的白皮书。白皮书阐述了生成式人工智能系统在安全和安保方面的挑战以及应对新兴风险的策略。
微软人工智能红队成立于 2018 年,旨在应对不断变化的人工智能安全和安保风险。微软人工智能红队的主要工作是识别漏洞和减轻漏洞风险,将传统的安全实践和负责任的人工智能措施相结合。
新白皮书题为“红队测试100款生成式人工智能产品的反思”。白皮书指出,生成式人工智能引入的新漏洞会放大现有的安全风险,降低新漏洞风险需要多方面的应对策略。白皮书提到,应对从传统网络安全缺陷到新型人工智能在内的等各种特定威胁,都需要人类专业知识、持续测试和协作,白皮书强调了这一点的重要性。
白皮书报告详细阐述了三个主要结论,第一个结论是,生成式人工智能系统会放大现有的安全风险和新的风险。白皮书报告发现,生成式人工智能模型引入了新的网络攻击向量,同时放大了现有的漏洞。
在生成式人工智能中,过时的软件组件或不当的错误处理等传统安全风险仍然是关键问题,此外,提示词注入等模型层次的弱点也为人工智能系统带来了独特的挑战。
在一个案例研究中,微软人工智能红队发现某视频处理AI应用中过时的FFmpeg组件导致了服务器端请求伪造攻击,这表明人工智能驱动的解决方案中仍然存在遗留的问题。报告指出,“人工智能红队敏锐察觉新的网络攻击向量,同时对现有的安全风险保持警惕。人工智能安全最佳实践应包括基本的网络卫生措施。”
第二个结论为,人类是改进和保障人工智能安全的核心。第二个结论指出,尽管自动化工具在创建提示词、协调网络攻击和评分响应方面非常有用,但红队工作无法完全自动化,人工智能红队工作严重依赖人类专业知识。
白皮书认为,主题专家在人工智能红队中扮演着至关重要的角色,这些专家能够评估医学、网络安全和化学、生物、放射及核相关等专业领域的内容,而自动化则通常难以胜任这些领域的工作。尽管语言模型可以识别仇恨言论或露骨内容等一般风险,但这些模型难以评估一些特定细微的领域特定问题,因此人工监督对于确保全面的风险评估至关重要。
主要基于英语数据训练的人工智能模型往往无法捕捉不同语言或文化背景下的风险和敏感性。同样,聊天机器人与处于困境中的用户的互动可能导致一些社会心理伤害,探讨这类问题时,要了解这种互动的广泛含义和潜在影响也需要人类的判断。
第三个结论为,深度防御是确保人工智能系统安全的关键。第三个结论指出,要降低生成式人工智能的风险需要采取一种多层次的方法,多层次方法将持续测试、强大的防御措施和自适应策略结合在一起。
白皮书报告指出,虽然缓解措施可以减少漏洞,但无法完全消除风险,因此持续的红队工作是加强人工智能系统的关键组成部分。微软的研究人员表示,企业采取反复识别和解决漏洞等措施可以提高攻击成本,从而威慑对手,并提高人工智能系统的整体安全态势。
好文章,需要你的鼓励
最新数据显示,Windows 11市场份额已达50.24%,首次超越Windows 10的46.84%。这一转变主要源于Windows 10即将于2025年10月14日结束支持,企业用户加速迁移。一年前Windows 10份额还高达66.04%,而Windows 11仅为29.75%。企业多采用分批迁移策略,部分选择付费延长支持或转向Windows 365。硬件销售受限,AI PC等高端产品销量平平,市场份额提升更多来自系统升级而非新设备采购。
清华大学团队开发出LangScene-X系统,仅需两张照片就能重建完整的3D语言场景。该系统通过TriMap视频扩散模型生成RGB图像、法线图和语义图,配合语言量化压缩器实现高效特征处理,最终构建可进行自然语言查询的三维空间。实验显示其准确率比现有方法提高10-30%,为VR/AR、机器人导航、智能搜索等应用提供了新的技术路径。
新一代液态基础模型突破传统变换器架构,能耗降低10-20倍,可直接在手机等边缘设备运行。该技术基于线虫大脑结构开发,支持离线运行,无需云服务和数据中心基础设施。在性能基准测试中已超越同等规模的Meta Llama和微软Phi模型,为企业级应用和边缘计算提供低成本、高性能解决方案,在隐私保护、安全性和低延迟方面具有显著优势。
IntelliGen AI推出IntFold可控蛋白质结构预测模型,不仅达到AlphaFold 3同等精度,更具备独特的"可控性"特征。该系统能根据需求定制预测特定蛋白质状态,在药物结合亲和力预测等关键应用中表现突出。通过模块化适配器设计,IntFold可高效适应不同任务而无需重新训练,为精准医学和药物发现开辟了新路径。