一个名为 Crogl 的初创公司周四推出了其在 IT 领域的 AI 代理产品:一款针对网络安全研究人员的自主助手,可帮助他们分析每天数千条网络警报,以发现并修复实际的安全事件。据 Crogl 首席执行官兼联合创始人 Monzy Merza 称,这款助手被形容为研究人员的"钢铁侠战衣",目前已悄然部署在多家大型企业和其他大型组织中。随着今天正式结束私有测试阶段,该公司同时宣布获得 3000 万美元融资。
这 3000 万美元融资分两部分:由 Menlo Ventures 领投的 2500 万美元 A 轮融资,以及此前由 Tola Capital 领投的 500 万美元种子轮融资。总部位于新墨西哥州阿尔伯克基的 Crogl 将利用这笔资金继续开发产品并扩大客户群。
目前,安全工具的数量已达数百种,包括那些旨在帮助解析和修复现有安全软件产生的大量潜在问题警报的工具。有时感觉安全工具的数量几乎和安全警报一样多。然而,Crogl 与众不同,部分原因在于最初构思这个想法的人。
Merza 在安全行业有着丰富而有趣的背景。他毕业后在美国政府的 Sandia 原子研究实验室从事安全工作。后来他加入 Splunk,建立并领导其安全业务。之后他转投 Databricks 做同样的工作。
当 Merza 开始考虑创业时,他没有直接创办公司,而是选择回到行业,在汇丰银行工作,以从最终用户的角度了解痛点。积累了这些经验后,他邀请了在 Splunk 共事多年的同事 David Dorsey (现任 Crogl 的 CTO) 一起创业。
这正好是两年前的事,过去一年他们一直在私有测试阶段积累客户群。
据 Merza 向我解释,Crogl 这个名字是由三个不同的词和理念组合而成。Cronus (克洛诺斯,泰坦之王和时间之神) 构成了名字的前三个字母。'g' 来自 gnosis,意为知识或意识。最后的 'l' 代表逻辑。从某种意义上说,这些都概括了 Crogl 这家初创公司的目标。
Merza 认为问题的关键在于,运营团队中的安全分析师每天最多只能查看和解决约 20 多个不同的安全警报,但在同一时期他们可能会收到多达 4,500 个警报。
在他看来,到目前为止开发的工具无法像人类那样有效地评估警报,部分原因是它们解决问题的方式不对。
他和 Dorsey 观察到,安全主管通常喜欢他们的团队看到大量警报,因为根据强化学习原理,这意味着他们在处理每个警报时都能获得更多经验和理解。
当然,这也是不可持续的,这就是迄今为止推动许多安全产品发展的原因。"安全行业一直在告诉人们要减少警报数量,"Merza 说。"那么,如果每个警报实际上都是一个乘数,而安全团队通过分析他们想要的任何内容而变得更加强大,会怎样呢?"
这正是 Crogl 试图用其方法解决的问题。该初创公司借助大数据和驱动大语言模型的超大参数理念,构建了 Merza 所说的"知识引擎"来驱动其平台 (这里可以理解为"大型安全模型")。该平台不仅标记可疑活动,还在学习更多关于什么信号可能构成可疑活动。关键是,它还允许研究人员使用自然语言 (如果他们愿意) 查询所有警报,以提取和理解趋势并完成更多工作。
随着时间推移,Crogl 有潜力处理更多警报以外的任务 — 例如,修复就是一个很明显的领域,Menlo 合伙人、该公司投资负责人 Tim Tully 指出。
Tully 与 Crogl 团队的渊源由来已久,包括创始成员、曾担任 Splunk 首席架构师等重要职务的 Brad Lovering — 他曾是 Splunk 的 CTO,负责监督他们所有工作。
"我知道他们有能力建造什么。我知道他们很了解这个领域。所以,这就像是口中的鱼钩一样,就是团队本身。从风投的角度来看,拥有如此丰富的经验是相当罕见的,"他说。他补充说,他错过了种子轮投资的机会,后来不断听到关于这个产品的消息,就想"够了"。他飞到阿尔伯克基,亲自看了演示,这就确定了交易。"感觉这个产品就像是 Monzy 的安全思维在解决问题方式上的映射。"
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。