IBM今天的一份新报告发现,2024年数据泄露的平均成本已达到488万美元的历史新高,比 2023年增长10%,因为泄露事件的破坏性越来越大,并进一步提高了对网络团队的需求。
这些数据来自IBM的2024年数据泄露成本年度报告,该报告根据2023年3月至2024年2月期间对全球604个组织经历的真实数据泄露事件分析而成。该研究由Ponemon Institute进行,报告已经连续发布了19年。
除了数据泄露成本平均上升了10%之外,该报告的主要发现还包括,70%的组织报告称,数据泄露造成了重大或非常重大的破坏。
由于业务损失以及泄露后的客户和第三方响应成本推动,数据泄露平均成本不断上升,造成的连带损失只会不断上升。该报告指出,数据泄露的破坏性影响不仅在于会增加成本,还会让恢复时间变得更长,在某些情况下,组织需要100多天才能完全恢复。
很多组织的安全团队在处理攻击方面都人手不足。该报告发现,与去年相比,网络安全人员短缺增加了26%,与安全人员配备充足或缺口不大的公司相比,网络安全人手短缺的公司数据泄露的成本平均高出176万美元。
三分之二的受访企业已经或者正在安全运营中部署人工智能安全服务和相关自动化工具,和去年相比,这是一个显著的转变,也是一个积极的转变。已经使用人工智能安全工具的企业在数据泄露上的成本比那些不使用人工智能的企业平均低220万美元,这是人工智能安全的一个明确卖点。
在成功绕过防御的数据泄露事件中,有40%都涉及数据在多处存储,包括公共云、私有云和本地存储。这些数据泄露的平均成本超过500万美元,识别和遏制需要的时间也最长,达到283天。
报告中的其他发现包括被盗或泄露的凭据成为最常见的初始攻击媒介,在所有泄露事件中占比16%,解决起来也最为耗费时间,通常需要将近10个月。医疗保健、金融服务和技术等关键基础设施行业的泄露成本最高,其中医疗保健行业泄露成本连续14年最高,平均为977万美元。
虽然人们注意到人工智能防御正在迅速部署,但该报告警告说,更广泛地拥抱人工智能会带来更大的风险。
IBM Security 战略和产品设计副总裁 Kevin Skapinetz 表示:“企业陷入了泄露、遏制和后果响应的持续循环中。”“这个循环现在通常包括加强对安全防御的投资并将泄露的成本转嫁给消费者——让安全成为开展业务的新成本。随着生成式人工智能快速渗透进入企业,扩大了攻击面,这些成本很快就会变得不可持续,迫使企业重新评估安全措施和响应策略。未雨绸缪,企业应该投资于新的人工智能驱动的防御措施,并开发所需的技能,以应对生成式人工智能带来的新风险和机遇。”
好文章,需要你的鼓励
随着AI策略成熟,CIO开始重新考虑对公有云的依赖,私有云和本地环境重新受到关注。调查显示,67%的企业领导计划在未来12个月内将部分AI数据迁移至非云环境。主要原因包括成本可预测性、数据隐私保护、安全问题和云集成挑战。对于持续的AI工作负载,购买自有GPU比租用公有云更经济。私有云支出增长更快,预计2025年将有54%的组织在私有云上投入超过1000万美元。
沙特TachyHealth团队开发的32亿参数医疗AI模型Gazal-R1,通过创新的双阶段训练方法在医疗推理任务上超越了12倍大的模型,在MedQA等测试中取得87.1%的优异成绩,展现了精巧训练策略胜过规模扩张的重要启示,为资源有限的医疗AI研究提供了新路径。
本文深入分析了从传统AI发展到AGI过程中可能出现的智能爆发现象。基于AI专家共识的2040年AGI实现预期,文章探讨了七种主要发展路径,重点关注突破性的"登月路径"。智能爆发理论认为,智能可以像原子链式反应一样相互促进,快速产生大量新智能。文章预测2038-2039年可能发生智能爆发,随后在2040年实现AGI,但也指出了关于智能爆发的启动、控制和潜在风险等争议问题。
奥地利维也纳医科大学研究团队开发了RetFiner技术,通过让眼科AI模型同时学习OCT图像和医疗文字描述,显著提升了诊断准确率。该方法采用四种训练任务让AI模型建立图像与文字的深层联系,在三个主流眼科AI模型上实现了2-6个百分点的性能提升,为医学AI发展开辟了新方向。