
Cat 6A 的以太网供电 (PoE)
根据美国市场研究公司 Grand View Research 的预测,截止 2025 年,全球 PoE 市场规模将达到 37.7 亿美元。随着室内外部署的有源传感器、设备和控制器越来越多,以太网供电(PoE)的重要性也在不断提升。一方面,更多的网络设备如 IP 安全摄像头、Wi-Fi 接入点、室内无线网络、楼宇管理系统和 LED 照明等开始让以太网供电的传输距离增加。截至目前,当代 PoE++ 系统可提供高达 90 W 的功率,足以运行最新、耗电量更高的网络设备。超六类(Cat 6A)正是能为 PoE++ 应用提供更加优异供电性能与距离的布线之选,且具备更强的散热性。
导致温度升高和火灾隐患的部分原因是单个导体中的热量增加。导体越小,热量增加越多。承载 400 mA 电流的 Cat 5 线缆温度升高约 10℃,而承载同样电流的 Cat 6A 线缆温度升高 6℃。热量累积还取决于线束中的线缆数量。您可以部署合理的策略来减轻这个问题的影响。
影响不大。热负荷影响成束线缆的主要原因在于线缆的长度和密度。机架中优化的理线方式可提供良好通风和散热。因此,机架内的影响可以忽略不计。
不确定。电力传输不会受到影响,但会影响数据传输。为了防止出现这种情况,建议参考我们的 PoE 实施指南。
如果没有明火,可能性极低。成束线缆会发热,但不会达到酿成火灾的水平。热负荷的影响仅限于电气性能。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。