当软件开始像人类安全分析师那样思考和行动,只不过更快且无需睡眠时,会发生什么?这正是当前网络安全领导者面临的现实:随着人工智能,特别是代理型 AI,加速了向自主威胁响应和实时决策的转变。
这些数字超级用户正在改变游戏规则。代理型系统能够扫描海量数据集、触发自动化工作流程,并在数秒内发现漏洞,这迫使各组织不得不重新审视从数据治理到平台战略的所有方面。正如 CrowdStrike Inc. 的创始人、总裁及首席执行官 George Kurtz(见图)所言,随着对手开始应用相同工具以及网络罪犯与国家间的界限日趋模糊,保持领先的紧迫性从未如此迫切。
CrowdStrike 的 George Kurtz 与 theCUBE 谈论代理型 AI。
“我们仍处在初期阶段,我认为每个人都在努力搞清楚如何使用它、如何控制数据以及如何以安全的方式获取结果,” Kurtz 如是说。“说实话,在很多领域,困扰大家夜不能寐的正是无处不在的 AI 狂野西部……这让许多人熬夜思考。”
在 RSAC 2025 会议期间,Kurtz 与 theCUBE 的 Dave Vellante 在 theCUBE(SiliconANGLE Media 的直播工作室)的独家直播中进行了对话。他们讨论了人工智能,尤其是代理型 AI,如何通过实现自主威胁检测与响应来改变网络安全格局,同时也带来了必须采用适应性、数据驱动策略应对的新风险。(* 以下为披露说明。)
代理型 AI 带来了新的挑战与机遇
与早期的聊天机器人或基础助手不同,代理型 AI 系统设计上是根据既定政策、工作流和实时数据自主采取行动。据 Kurtz 介绍,CrowdStrike 的 Charlotte AI 超越了传统提示功能,能够在极少的人为干预下实现自动化事件响应、威胁调查和运营成果。
他补充道:“我们考虑的已不止是聊天机器人,而是把它接入工作流,为客户带来实实在在的效果。您可以让这类 AI 代理代表您工作,主动进行信息调研和整合;主动审视事件并进行总结,基本上能够模拟分析师的工作,而不需要所有的提示。”
Kurtz 解释称,这一新一代 AI 同样会带来风险,尤其是当对手也采用相同工具时。生成式 AI 和大语言模型正在帮助威胁行为者迅速识别并武器化漏洞,迫使防御者以史无前例的速度作出适应。
他说:“基本上,您可以利用众多不同的大语言模型来协助制造新的攻击。它们可以帮助识别漏洞所在,实际上还能创造并武器化新的漏洞。我们所看到的是,各公司修补这些零日漏洞的时间窗口正急剧缩小。安全性实际上就是时间的函数。”
随着攻击者手段日益复杂,平台也必须不断进化以保持优势。CrowdStrike 的应对策略是推行一种经过精心策划的开放式方案,重点强调高保真数据和合作伙伴整合。与那些倾向于推广封闭式大型平台的厂商不同,Kurtz 认为 CrowdStrike 的战略注重的是自身优势和系统互操作性。
Kurtz 表示:“我们并不完全认同那种思路,因为在安全领域……没有一个平台可以统治一切,事实就是如此。但我们可以从其他第三方采集数据,再与我们自有的 CrowdStrike 数据结合,从而在威胁狩猎、人工智能和成果上为用户提供无缝体验。”
好文章,需要你的鼓励
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。
数据分析平台公司Databricks完成10亿美元K轮融资,公司估值超过1000亿美元,累计融资总额超过200亿美元。公司第二季度收入运营率达到40亿美元,同比增长50%,AI产品收入运营率超过10亿美元。超过650家客户年消费超过100万美元,净收入留存率超过140%。资金将用于扩展Agent Bricks和Lakebase业务及全球扩张。
上海AI实验室发布OmniAlign-V研究,首次系统性解决多模态大语言模型人性化对话问题。该研究创建了包含20万高质量样本的训练数据集和MM-AlignBench评测基准,通过创新的数据生成和质量管控方法,让AI在保持技术能力的同时显著提升人性化交互水平,为AI价值观对齐提供了可行技术路径。