随着大语言模型 (LLM) 在各行业得到更广泛的应用,确保这些强大 AI 工具的安全性已成为一个日益增长的关切。本周在新加坡举行的 Black Hat Asia 2025 大会上,一组专家深入探讨了 LLM 防火墙是否是 AI 安全的解决方案,还是仅仅是整个安全体系中的一部分。
网络安全公司 CloudsineAI 的创始人 Matthias Chin 首先指出了防护机制和防火墙之间的区别:"防护机制是一种保护机制,而防火墙是一个具有更多功能的安全概念 - 例如,它是一个控制点,包含防护机制,拥有威胁向量数据库,并可以与 SIEM (安全信息和事件管理) 工作流程集成。"
新加坡内政团队科技局 (HTX) 首席创新官兼首席云工程师 Pan Yong Ng 指出,将 AI 安全整合到组织 IT 基础设施的基础中非常重要,尽管对于安全控制应该放在哪里仍存在不确定性。他建议在各个层面实施组合控制,从推理服务模型到 Web 应用程序安全,甚至扩展到 AI 代理。
AI Singapore 的 AI 创新总监 Laurence Liew 表示,开发人员对 AI 代理和大语言模型的使用日益增加,这将需要使用 LLM 防火墙来执行防护机制和企业政策。他说:"我们告诉年轻工程师要确保设置某些防护机制,他们会去做,但他们经常忙于编码,以至于防护机制可能没有得到更新。"
新加坡南洋理工大学研究员 Xiaojun Jia 指出了传统防火墙在解决 LLM 特定安全问题方面的局限性。他说:"传统防火墙专注于网络安全,这使得它们在防御利用 LLM 逻辑流程的越狱攻击方面效果不佳。"
Chin 补充说,LLM 防火墙不仅仅是为了确保 AI 安全 - 它们也用于 AI 安全性,以防止模型幻觉和产生有偏见和有害的输出。它们还可以防范通过人类语言和提示而不是代码执行的新一代攻击。
专家组还探讨了通用 LLM 防火墙是否能够在所有行业中有效运作,还是需要定制化的问题。
Liew 特别提到了 AI Singapore 与政府机构的转录项目,其中语音转文本引擎根据每个机构的需求进行了微调。他说,同样地,LLM 防火墙应该经过精心设计,以处理医疗保健和金融服务等特定场景。
在实施 LLM 防火墙方面,Jia 提倡采用包括输入检测、模型调优和输出过滤的多层次方法。
"输入检测在提示输入模型之前检测恶意输入,模型调优确保输出与人类价值观一致,输出过滤检测有害输出,"Jia 说,同时他也承认在安全性和可用性之间取得平衡是一个挑战,呼吁采用能够应对不断演变的攻击的自适应防御措施。
测试和基准测试对于确保 LLM 及其防火墙按预期工作至关重要。Chin 表示这个领域仍在发展中,需要完成的工作将取决于测试用例,并与防火墙将部署的行业(无论是银行还是医疗保健)保持一致。他指出 Meta 的 CyberSecEval 和新加坡的 AI Verify 是可以帮助支持测试和基准测试工作的示例。
Liew 强调了在构建和测试 LLM 时拥有多元化团队的重要性。他说:"拥有跨不同学科的人才非常重要。确保团队中有了解领域的人。你会惊讶地发现,他们提出的问题是网络安全工程师从未想到的。"
关于 LLM 防火墙是否会阻碍 AI 创新,Chin 表示,随着模型上下文协议 (MCP) 等新兴技术的采用 - 这是 Anthropic 开发的一个开放标准,允许 AI 代理与其他应用程序和数据源通信 - AI 代理可能会绕过 LLM 防火墙并开始与其他代理通信。他补充说:"我们必须让创新蓬勃发展,并继续建立应对挑战的敏捷性。"
Chin 表示,LLM 防火墙将继续发展,这是由代理式 AI 框架的兴起推动的,组织,特别是大型企业和政府,将需要某种形式的防护机制或防火墙。就像网络防火墙现在包括 Web 应用防火墙和终端防火墙一样,他指出 LLM 防火墙可以采用部署在安全控制点和终端的硬件或软件形式。
好文章,需要你的鼓励
尽管AI实验广泛开展,但大多数AI项目缺乏成熟度无法规模化。93%的组织在使用或构建AI系统,但仅不到10%建立了强健的治理框架。研究显示,超过50%的AI实验从未投产,仅1%的项目实现真正变革性成果。缺乏数据和AI主权是关键障碍,而拥有主权的组织AI项目成功率提升2倍,回报率增长5倍。
香港中文大学等顶尖院校联合研究发现,当前最先进的AI视频生成技术已能制作出连顶级检测系统都无法识别的假视频。研究团队开发了Video Reality Test平台,测试结果显示最强生成模型Veo3.1-Fast的假视频仅有12.54%被识别,而最强检测系统Gemini 2.5-Pro准确率仅56%,远低于人类专家的81.25%。研究还发现检测系统过度依赖水印等表面特征,音频信息能提升检测准确性,但技术发展已对信息真实性判断带来严峻挑战。
企业正竞相释放AI的变革潜力,但真正的瓶颈不在技术而在人力准备度。Gartner研究显示,56%的CEO计划在未来五年削减管理层级,但91%的CIO未跟踪AI引发的技能变化。超过80%的领导者根本不衡量AI准确性。AI价值取决于员工适应和与智能机器共同发展的能力。CIO必须应对五个关键人力障碍:AI退出效应、中层管理困境、行为副产品、准确性悖论和影子AI现象,这些深层次的行为反射和组织动态如不解决将阻碍转型。
Google DeepMind团队提出了革命性的"扩散预览"模式,通过ConsistencySolver技术实现AI图像生成的"预览+精修"工作流程。该技术能在5-10步内生成高质量预览图像,与传统40步完整生成保持高度一致性,用户体验测试显示总体时间节省近50%,大大提高了创作效率和创意探索的自由度。