Broadcom 修复了 VMware Cloud Foundation 中 IT 运维和日志管理工具的五个高危漏洞,其中包括两个在特定条件下可能导致凭证泄露的信息泄露漏洞。
所有漏洞都已提供修复补丁。Broadcom 的安全公告指出,目前尚未发现这些漏洞被实际利用的情况。
值得注意的是,利用这些漏洞需要获得对易受攻击部署的授权访问权限,因此如果这些漏洞在实际环境中被成功利用,很可能是通过被入侵或恶意账户实现的。
这些 CVE 漏洞影响了用于跨环境管理 IT 运维的 Aria Operations,以及用于存储和分析日志数据的 Aria Operations for Logs。两者都是 VMware Cloud Foundation 的组件,这意味着这些漏洞也影响了该混合云平台的 4.x 和 5.x 版本。
具体而言:四个漏洞 (CVE-2025-22218、CVE-2025-22219、CVE-2025-22220 和 CVE-2025-22221) 影响 VMware Aria Operations for Logs 8.0 及更新版本,一个漏洞 (CVE-2025-22222) 影响相同版本的 VMware Aria Operations。将两个产品更新到 v8.18.3 版本可以修复这些问题。VMware Cloud Foundation 用户可以按照 KB92148 来应用必要的修复。
其中最严重的是 CVE-2025-22218,这是一个严重等级为 8.5 的信息泄露漏洞,存在于 VMware Aria Operations for Logs 中。安全警告称:"具有只读管理员权限的恶意行为者可能能够读取与 VMware Aria Operations for Logs 集成的 VMware 产品的凭证。"
影响 VMware Aria Operations 的单个漏洞 CVE-2025-22222 也是一个信息泄露漏洞,其 CVSS 严重等级为 7.7。只要拥有(或窃取)有效的服务凭证 ID,非管理员权限用户就可以利用此漏洞窃取外部插件的凭证。
在 VMware Aria Operations for Logs 中修复的漏洞还包括两个存储型跨站脚本 (XSS) 漏洞:CVE-2025-22219 和 CVE-2025-22221,CVSS 评分分别为 6.8 和 5.2。
这两个漏洞都可以被用来向应用程序注入恶意脚本,然后在受害者的浏览器中执行。利用 CVE-2025-22219 不需要管理员权限,可能导致以管理员级别用户身份执行任意操作。
而利用 CVE-2025-22221 需要管理员权限。但如果攻击者拥有此权限,他们可以注入恶意脚本,在受害者执行代理配置的删除操作时在其浏览器中执行。
最后是一个 CVSS 评分为 4.3 的权限提升漏洞,编号为 CVE-2025-22220。该漏洞允许具有 Aria Operations for Logs API 网络访问权限的用户执行某些本应需要管理员权限的操作。
Broadcom 感谢来自米其林 CERT 的 Maxime Escourbiac,以及来自 Abicom 的 Yassine Bengana 和 Quentin Ebel 发现并披露了这五个漏洞。
由于 VMware 虚拟化软件在大型企业和政府机构中的普遍使用,无论是国家级黑客还是以金钱为动机的犯罪分子都热衷于利用 VMware 漏洞。鉴于其作为主要攻击目标的历史,即使这些漏洞的利用条件相对严格,也建议将这些补丁放在近期待办事项列表中。
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。