网络安全公司 Sekoia 向 Chrome 用户发出警告,一场针对浏览器扩展开发者的供应链攻击已经影响了数十万用户。
目前已有数十名 Chrome 扩展开发者遭到攻击。攻击者的目标是窃取 ChatGPT 和 Facebook for Business 等网站的 API 密钥、会话 cookie 和其他身份验证令牌。
Sekoia 调查了这次大规模网络钓鱼活动使用的基础设施,并"高度确信"其可以追溯到 2023 年的类似攻击。最近一次已知的攻击活动发生在 2024 年 12 月 30 日。
受害者之一是加利福尼亚州的 Cyberhaven,这家公司开发基于云的数据保护工具。该公司在 2024 年节礼日期间发现了入侵情况,这一发现当时被广泛报道。
Booz Allen Hamilton 分析了 Cyberhaven 的事件,证实了该供应商对这是一场更大规模攻击的怀疑。其随附的报告 [PDF] 揭示了一长串可能受影响的其他扩展,使潜在受影响的最终用户数量达到数百万。Sekoia 在其研究中发布了一份不太完整的列表,但两份列表中出现了相同的扩展。
根据 Booz Allen Hamilton 的报告,一些可能受影响的扩展似乎已从 Chrome 网上应用店下架。其他许多扩展的页面显示它们在 Cyberhaven 事件后已更新,但很少有公开承认发生事件的。
Reader Mode 是一个例外,其创始人 Ryzal Yusoff 向约 30 万用户发表公开信,告知他们 12 月 5 日发生的入侵事件。
"2024 年 12 月 5 日,由于一封模仿 Chrome 网上应用店官方通信的钓鱼邮件,我们的开发者账户遭到入侵,"Yusoff 说。"这次入侵使未经授权的人能够将恶意版本的 Reader Mode 扩展 (1.5.7 和 1.5.9) 上传到 Chrome 网上应用店。在 Google 发出与此次入侵相关的钓鱼尝试警告后,这次攻击于 2024 年 12 月 20 日被发现。"
位于奥斯汀的 Nudge Security 联合创始人兼 CTO Jaime Blasco 也在一系列在线帖子中列出了他怀疑遭到入侵的扩展名单,其中许多也出现在 Booz 的报告中。
攻击者通过伪装成 Chrome 网上应用店开发者支持的钓鱼邮件针对开发团队。根据 Yusoff 和 Sekoia 的说法,这些邮件模仿官方通信。
报告中出现的示例邮件显示,警告称扩展可能因违反虚假规则(如扩展描述中的不必要细节)而被从 Chrome 中删除。
受害者被诱导点击一个伪装成 Chrome 网上应用店政策说明的链接。该链接指向一个合法的 Google 账户页面,提示他们批准访问恶意 OAuth 应用。一旦开发者授予应用权限,攻击者就获得了将受感染版本的扩展上传到 Chrome 网上应用店所需的一切。
研究人员表示,开发者的电子邮件很可能是从 Chrome 网上应用店收集的,因为这些信息可能在那里被访问到。
Sekoia 利用与钓鱼邮件相关的两个域名,发现了此次活动使用的其他域名以及同一批不法分子可能参与的之前的攻击。
作为攻击者命令和控制 (C2) 服务器的域名仅托管在两个 IP 地址上。通过被动 DNS 解析,研究人员认为他们发现了该活动中所有可能被入侵的域名。
Sekoia 表示,由于每次都使用相同的注册商 (Namecheap),且 DNS 设置和 TLS 配置一致,因此很容易发现最新攻击和 2023 年使用的域名。
好文章,需要你的鼓励
谷歌推出升级版图像生成模型Nano Banana Pro,基于最新Gemini 3语言模型构建。新模型支持更高分辨率(2K/4K)、准确文本渲染、网络搜索功能,并提供专业级图像控制能力,包括摄像角度、场景光照、景深等。虽然质量更高但成本也相应增加,1080p图像费用为0.139美元。模型已集成到Gemini应用、NotebookLM等多个谷歌AI工具中,并通过API向开发者开放。
慕尼黑大学联合多所知名院校的研究团队发现,AI深度研究助手虽然能力强大,但存在严重安全漏洞。通过"计划注入"和"意图劫持"两种新攻击方法,这些AI助手可能绕过安全防护,生成比普通AI更详细、更危险的有害内容。研究测试了六款主流AI模型,发现在医学等敏感领域风险尤其突出。团队开发了新的安全评估框架并提出多层防护建议。
谷歌为Gemini应用和网页版发布SynthID检测器,允许用户上传图像判断是否由AI生成。但该功能局限性明显,仅能识别带有谷歌SynthID水印的Gemini生成图像。同时谷歌还发布了Nano Banana Pro图像生成引擎升级版,基于Gemini 3 Pro模型,专门优化文本生成清晰度,可创建包含可读内容的信息图表。
牛津大学研究团队发现了针对AI推理安全系统的四种"黑科技"攻击方法,能以超过90%的成功率让最先进的安全防护失效。这些方法利用AI对话模板的结构性缺陷,从简单的符号插入到复杂的推理劫持,门槛极低但威力巨大。研究揭示了当前AI安全架构的根本性问题,特别是在开源AI时代,这些漏洞的影响范围前所未有。