如果说今天的创新步伐是场比赛,世界正在以飞快的速度发生变化。
相对于当今世界发生的每一项积极的创新,都会有相反的应用。黑客和网络犯罪分子将用人工智能 (AI) 等,以同样的手段添加到他们的工具包中。
Hawk AI首席执行官兼联合创始人Tobias Schweiger告诉记者:“技术的应用不仅是好人的专利,坏人正在加速这样的军备竞赛,采用新的技术。”
“作为一家金融机构,必须意识到这一趋势,并确保企业拥有足够的技术来反击。”
调查发现,超过40%的美国银行报告称,欺诈行为正逐年增加,几乎是 2022 年报告的两倍。欺诈交易数量的增加意味着欺诈损失的逐年更高,并突显出犯罪分子能够更好地绕过原有的欺诈防御体系。
Schweiger认为,至少在过去二十年里,欺诈系统通常是基于简单的规则引擎,而这些规则引擎现在已不再起作用了。
“升级解决方案和系统并纳入机器学习 (ML) 和人工智能确实是唯一的出路,”他解释道。
当代的问题需要当代的解决方案
为了有效地锁定紧急攻击向量漏洞,企业不能再满足于广泛的防御。随着黑客变得越来越聪明,黑客程序需要通过更加精确地检测相关或可疑行为来做出同样的反应。
“我认为最终没有任何赢家,”Schweiger说。“公司只需要像犯罪分子一样迅速......解决方案是通过重新调整模型、对过去发生的事情进行回溯测试以及校准防御措施来不断学习,以更准确地保护和避免组织特定的问题行为。”
让事情变得更加复杂的是,至少有三分之一的金融机构认为欺诈者的复杂性是设计策略和制定打击欺诈工具决策真正的挑战。
正如Schweiger所解释的那样,这就是为什么金融机构需要阻止和解决问题并从小事做起,而不是试图一次把大海煮沸。
“不需要完全取代老式的基于规则的流程,”他说。“规则有其存在的理由,因为它们是组织所了解并感到满意的。对于大多数组织来说,仅采用人工智能动作有点太大了。我们更相信,机器学习和人工智能能将旧世界和新世界结合,其中的规则反映了人们想要停止或关注的模式,而顶部的第二层机器学习和人工智能提供了精确性和敏捷性”。
确定合法性越来越具有挑战性
欺诈是实时发生的,新的生成式人工智能功能为黑客提供了更多途径来激活更多欺诈行为漏洞,包括交易欺诈、开户、账户接管和其他行为驱动的诈骗手段。
“信用卡欺诈仍是黑客们的摇钱树。”Schweiger说。“ACH 支付也受到了广泛关注。使用生成式人工智能进行模仿(包括深度伪造声音甚至面部)的案件也在不断增加。这些技术代表了黑客正在进行更大、面向未来的进步。”
随着欺诈技术变得更加复杂,使合法的请求会被消费者和其他最终用户忽略,他们不确定哪些请求是合法的,哪些请求来自黑客。
“人工智能的应用在这种情况下非常重要,因为它可以识别与正常行为发生偏差的异常。”Schweiger解释道。“该策略始终以数据为依据:如交易数据、地理位置信息、设备指纹等。未来希望更囊括了包括第三方欺诈池的信息。”
他表示,未来获取不同甚至非常规类型数据的能力将“非常重要”。
虽然现在的消费者通常不会被访问银行平台和交易时遇到的身份验证或注册所困扰,但人工智能集成以及人工智能模型在不断从新数据和环境中学习的能力可以帮助确保平衡安全性和便捷性做出很好的平衡。
Schweiger表示,除了欺诈之外,其他类型的金融犯罪也是金融机构最关心的问题。
“像 Hawk AI 这样的工具能够将制裁筛查、反洗钱 (AML) 交易监控等功能,他能与欺诈保护结合起来,同时丰富彼此的信号。反之亦然,这是银行在赢得这场军备竞赛的答案。”他说。
好文章,需要你的鼓励
Liquid AI发布了新一代视觉语言基础模型LFM2-VL,专为智能手机、笔记本电脑和嵌入式系统等设备高效部署而设计。该模型基于独特的LIV系统架构,GPU推理速度比同类模型快2倍,同时保持竞争性能。提供450M和1.6B两个版本,支持512×512原生分辨率图像处理,采用模块化架构结合语言模型和视觉编码器。模型已在Hugging Face平台开源发布。
AIM Intelligence联合多所知名大学揭示了音频AI系统的重大安全漏洞,开发出名为WhisperInject的攻击方法。这种攻击能让看似无害的音频指令操控AI生成危险内容,成功率超过86%,完全绕过现有安全机制。研究暴露了多模态AI系统的系统性安全风险,对全球数十亿智能设备构成潜在威胁。
阿里团队推出首个AI物理推理综合测试平台DeepPHY,通过六个物理环境全面评估视觉语言模型的物理推理能力。研究发现即使最先进的AI模型在物理预测和控制方面仍远落后于人类,揭示了描述性知识与程序性控制间的根本脱节,为AI技术发展指明了重要方向。
新加坡国立大学研究团队系统梳理了视觉强化学习领域的最新进展,涵盖超过200项代表性工作。研究将该领域归纳为四大方向:多模态大语言模型、视觉生成、统一模型框架和视觉-语言-动作模型,分析了从RLHF到可验证奖励范式的政策优化策略演进,并识别出样本效率、泛化能力和安全部署等关键挑战,为这一快速发展的交叉学科提供了完整的技术地图。