如果说今天的创新步伐是场比赛,世界正在以飞快的速度发生变化。
相对于当今世界发生的每一项积极的创新,都会有相反的应用。黑客和网络犯罪分子将用人工智能 (AI) 等,以同样的手段添加到他们的工具包中。
Hawk AI首席执行官兼联合创始人Tobias Schweiger告诉记者:“技术的应用不仅是好人的专利,坏人正在加速这样的军备竞赛,采用新的技术。”

“作为一家金融机构,必须意识到这一趋势,并确保企业拥有足够的技术来反击。”
调查发现,超过40%的美国银行报告称,欺诈行为正逐年增加,几乎是 2022 年报告的两倍。欺诈交易数量的增加意味着欺诈损失的逐年更高,并突显出犯罪分子能够更好地绕过原有的欺诈防御体系。
Schweiger认为,至少在过去二十年里,欺诈系统通常是基于简单的规则引擎,而这些规则引擎现在已不再起作用了。
“升级解决方案和系统并纳入机器学习 (ML) 和人工智能确实是唯一的出路,”他解释道。
当代的问题需要当代的解决方案
为了有效地锁定紧急攻击向量漏洞,企业不能再满足于广泛的防御。随着黑客变得越来越聪明,黑客程序需要通过更加精确地检测相关或可疑行为来做出同样的反应。
“我认为最终没有任何赢家,”Schweiger说。“公司只需要像犯罪分子一样迅速......解决方案是通过重新调整模型、对过去发生的事情进行回溯测试以及校准防御措施来不断学习,以更准确地保护和避免组织特定的问题行为。”
让事情变得更加复杂的是,至少有三分之一的金融机构认为欺诈者的复杂性是设计策略和制定打击欺诈工具决策真正的挑战。
正如Schweiger所解释的那样,这就是为什么金融机构需要阻止和解决问题并从小事做起,而不是试图一次把大海煮沸。
“不需要完全取代老式的基于规则的流程,”他说。“规则有其存在的理由,因为它们是组织所了解并感到满意的。对于大多数组织来说,仅采用人工智能动作有点太大了。我们更相信,机器学习和人工智能能将旧世界和新世界结合,其中的规则反映了人们想要停止或关注的模式,而顶部的第二层机器学习和人工智能提供了精确性和敏捷性”。
确定合法性越来越具有挑战性
欺诈是实时发生的,新的生成式人工智能功能为黑客提供了更多途径来激活更多欺诈行为漏洞,包括交易欺诈、开户、账户接管和其他行为驱动的诈骗手段。
“信用卡欺诈仍是黑客们的摇钱树。”Schweiger说。“ACH 支付也受到了广泛关注。使用生成式人工智能进行模仿(包括深度伪造声音甚至面部)的案件也在不断增加。这些技术代表了黑客正在进行更大、面向未来的进步。”
随着欺诈技术变得更加复杂,使合法的请求会被消费者和其他最终用户忽略,他们不确定哪些请求是合法的,哪些请求来自黑客。
“人工智能的应用在这种情况下非常重要,因为它可以识别与正常行为发生偏差的异常。”Schweiger解释道。“该策略始终以数据为依据:如交易数据、地理位置信息、设备指纹等。未来希望更囊括了包括第三方欺诈池的信息。”
他表示,未来获取不同甚至非常规类型数据的能力将“非常重要”。
虽然现在的消费者通常不会被访问银行平台和交易时遇到的身份验证或注册所困扰,但人工智能集成以及人工智能模型在不断从新数据和环境中学习的能力可以帮助确保平衡安全性和便捷性做出很好的平衡。
Schweiger表示,除了欺诈之外,其他类型的金融犯罪也是金融机构最关心的问题。
“像 Hawk AI 这样的工具能够将制裁筛查、反洗钱 (AML) 交易监控等功能,他能与欺诈保护结合起来,同时丰富彼此的信号。反之亦然,这是银行在赢得这场军备竞赛的答案。”他说。
好文章,需要你的鼓励
AI颠覆预计将在2026年持续,推动企业适应不断演进的技术并扩大规模。国际奥委会、Moderna和Sportradar的领导者在纽约路透社峰会上分享了他们的AI策略。讨论焦点包括自建AI与购买第三方资源的选择,AI在内部流程优化和外部产品开发中的应用,以及小型模型在日常应用中的潜力。专家建议,企业应将AI建设融入企业文化,以创新而非成本节约为驱动力。
字节跳动等机构联合发布GAR技术,让AI能同时理解图像的全局和局部信息,实现对多个区域间复杂关系的准确分析。该技术通过RoI对齐特征重放方法,在保持全局视野的同时提取精确细节,在多项测试中表现出色,甚至在某些指标上超越了体积更大的模型,为AI视觉理解能力带来重要突破。
Spotify在新西兰测试推出AI提示播放列表功能,用户可通过文字描述需求让AI根据指令和听歌历史生成个性化播放列表。该功能允许用户设置定期刷新,相当于创建可控制算法的每周发现播放列表。这是Spotify赋予用户更多控制权努力的一部分,此前其AI DJ功能也增加了语音提示选项,反映了各平台让用户更好控制算法推荐的趋势。
Inclusion AI团队推出首个开源万亿参数思维模型Ring-1T,通过IcePop、C3PO++和ASystem三项核心技术突破,解决了超大规模强化学习训练的稳定性和效率难题。该模型在AIME-2025获得93.4分,IMO-2025达到银牌水平,CodeForces获得2088分,展现出卓越的数学推理和编程能力,为AI推理能力发展树立了新的里程碑。