今天,Broadcom推出一款搭载 StrataXGS Trident 4(BCM56690)的下一代Trident X7 。这是Broadcom公司的新一代企业交换平台,旨在将50E和100GbE网络引入服务器节点,并将400GbE引入更多数据中心。
预计新的Broadcom Trident 4-X7将被用作企业网络环境中的顶级机架交换机(ToR)。它被设计用于处理50GbE或100GbE连接到服务器,然后通过聚合交换层进行400GbE上行连接。

尽管我们在AI训练服务器领域中看到400GbE变得非常普遍,但企业服务器的成本往往是这些服务器的十分之一,并且由于VMware和Microsoft的许可模型核心数量往往较低,并不像云环中那样高。这意味着企业服务器互连的25GbE接口将在不久的将来转变为50GbE和100GbE,现在已经出现了NVIDIA BlueField-2 DPU和AMD Pensando DSC2-100G Elba DPU在运行VMware ESXi的情况。
NVIDIA正在开始推出与AMD相匹配的针对VMware企业级100GbE解决方案。这将有助于推动新的服务到企业VM部署中,从而更需要100GbE ToR交换机,Trident X7的出现将会很好满足这部分企业客户的需求。此外,鉴于SONiC在重塑行业的方式上非常重要,Broadcom表示将在Trident 4 上支持Enterprise SONiC。
最后的话
Broadcom仍将该产品列为“初步”,因此在交换机产品中可能还需要几个季度才能看到。与此同时,Trident已经存在多年,所以我们期待新一代产品的推出,令人兴奋的是,预计像Arista这样的公司将采用新的交换芯片进行生产。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。